Journal of the mechanical behavior of biomedical materials最新文献

筛选
英文 中文
Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue. 新鲜与固定冷冻猪结肠组织宏观与微观力学性能的比较。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-26 DOI: 10.2139/ssrn.4236169
Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill
{"title":"Comparison of macroscale and microscale mechanical properties of fresh and fixed-frozen porcine colonic tissue.","authors":"Clíona M. McCarthy, Joanna Allardyce, Seamus Hickey, Michael T. Walsh, K. McGourty, J. Mulvihill","doi":"10.2139/ssrn.4236169","DOIUrl":"https://doi.org/10.2139/ssrn.4236169","url":null,"abstract":"Mechanical changes to the microenvironment of the extracellular matrix (ECM) in tissue have been hypothesised to elicit a pathogenic response in the surrounding cells. Hence, 3D scaffolds are a popular method of studying cellular behaviour under conditions that mimic in vivo microenvironment. To create a 3D biomimetic scaffold that captures the in vivo ECM microenvironment a robust mechanical characterisation of the whole ECM at the microscale is necessary. This study examined the multiscale methods of characterising the ECM microenvironment using porcine colon tissue. To facilitate fresh tissue microscale mechanical characterisation, a protocol for sectioning fresh, unfixed, soft biological tissue was developed. Four experiments examined both the microscale and macroscale mechanics of both fresh (Fr) and fixed-frozen (FF) porcine colonic tissue using microindentation for microscale testing and uniaxial compression testing for macroscale testing. The results obtained in this study show a significant difference in elastic modulus between Fr and FF tissue at both the macroscale and microscale. There was an order of magnitude difference between the Fr and FF tissue at the microscale between each of the three layers of the colon tested i.e. the muscularis propria (MP), the submucosa (SM) and the mucosa (M). Macroscale testing cannot capture these regional differences. The findings in this study suggest that the most appropriate method for mechanically characterising the ECM is fresh microscale mechanical microindentation. These methods can be used on a range of biological tissues to create 3D biomimetic scaffolds that are more representative of the in vivo ECM, allowing for a more in-depth characterisation of the disease process.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105599"},"PeriodicalIF":0.0,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42897518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An experimental investigation of the mechanical performance of PLLA wire-braided stents. PLLA金属丝编织支架力学性能的实验研究。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4073500
A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan
{"title":"An experimental investigation of the mechanical performance of PLLA wire-braided stents.","authors":"A. Lucchetti, C. Emonts, Akram Idrissi, T. Gries, T. Vaughan","doi":"10.2139/ssrn.4073500","DOIUrl":"https://doi.org/10.2139/ssrn.4073500","url":null,"abstract":"Much of our current understanding of the performance of self-expanding wire-braided stents is based on mechanical testing of Nitinol-based or polymeric non-bioresorbable (e.g. PET, PP etc.) devices. The small amount of data present for bioresorbable devices characterizes stents with big nominal diameters (D>6mm), with a distinct lack of data describing the mechanical performance of small-diameter wire-braided bioresorbable devices (D≤5mm). This study presents a systematic investigation of the mechanical performance of wire-braided bioresorbable Poly-L-Lactic Acid (PLLA) stents having different braiding angles (α=45° , α=30°, and α=20°), wire diameters (d=100μm, and d=150μm), wire count (n=24 and n=48), braiding patterns (1:1-1, 2:2-1 and 1:1-2) and stent diameters (D=5mm, D=4mm, and D=2.5mm). Mechanical characterisation was carried out by evaluating the radial, longitudinal and bending response of the devices. Our results showed that smaller braid angles, larger wire diameters, higher number of wires and smaller stent diameter led to an increase in the stent mechanical properties across each of the three mechanical tests performed. It was found that geometrical features of a polymeric braided stent could be adapted to achieve a similar performance to the one of a metallic device. In particular, substantial increases in stent mechanical properties were found for a low braiding angle and when the braiding pattern followed a one-over-one-under configuration with two wires in parallel (1:1-2). Finally, it was shown that a mathematical model proposed in literature for metal braided stents can provide reasonable predictions also of polymeric stent performance but just in circumstances where wire friction does not have a dominant role. This study presents a wide range of experimental data that can provide an important reference for further development of wire-braided bioresorbable devices.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105568"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45239842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo. 剪切波弹性成像表征了体内肱二头肌的被动和主动力学特性。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4101072
Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates
{"title":"Shear wave elastography characterizes passive and active mechanical properties of biceps brachii muscle in vivo.","authors":"Manuela Zimmer, Benedict Kleiser, J. Marquetand, F. Ates","doi":"10.2139/ssrn.4101072","DOIUrl":"https://doi.org/10.2139/ssrn.4101072","url":null,"abstract":"Mechanical characterization of individual muscles in their in vivo environment is not well studied. Shear wave elastography (SWE) as a non-invasive technique was shown to be promising in quantifying the local mechanical properties of skeletal muscles. This study aimed to investigate the mechanics of the biceps brachii muscle (BB) derived from SWE in relation to elbow joint position and contraction intensity during isometric contraction. 14 healthy, young subjects participated in the study and five different joint positions (60°-180° elbow angle) were investigated. Shear elastic modulus and surface electromyography (sEMG) of the BB and elbow torque were measured simultaneously, both in passive (i.e., resting) and active states during slow, sub-maximal isometric ramp contractions up to 25%, 50%, and 75% of the maximum voluntary contraction. At passive state, the shear elastic modulus of the BB increased with increasing elbow angle (p < 0.001). Maximum elbow flexion torque was produced at 60° and it decreased with increasing elbow angle (p = 0.001). During sub-maximal contractions, both elbow angle (p < 0.001) and contraction intensity (p < 0.001) had significant effects on the shear elastic modulus but only contraction intensity (p < 0.001) affected sEMG amplitude of the BB. Although torque was decreased at extended elbow positions (150°, 180°), higher active shear elastic modulus of BB muscle was found compared to flexed positions (60°, 90°). Linear regression of the BB sEMG amplitude over elbow torque showed good agreement for all joint positions (R2 between 0.69 and 0.89) while the linear agreement between shear elastic modulus of BB and elbow torque differed between flexed (R2 = 0.70 at 60° and R2 = 0.79 at 90°) and extended positions (with the lowest R2 = 0.57 at 150°). We conclude that using SWE, we can detect length-dependent mechanical changes of BB both in passive and active states. More importantly, SWE can be used to characterize active muscle properties in vivo. The present findings have critical importance for developing muscle stiffness as a measure of individual muscle force to validate muscle models and using SWE in clinical diagnostics.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105543"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42247847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration. 体外和体内评价脱细胞富血小板纤维蛋白负载锶掺杂多孔磷酸镁支架骨再生。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4207864
C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi
{"title":"In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration.","authors":"C. M. Tarif, S. Mandal, Bijayashree Chakraborty, K. Sarkar, P. Mukherjee, M. Roy, S. Nandi","doi":"10.2139/ssrn.4207864","DOIUrl":"https://doi.org/10.2139/ssrn.4207864","url":null,"abstract":"The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105587"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47314812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method. 基于多尺度内聚区的有限元方法研究几何结构变化对皮质骨强度和损伤发生的影响。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4236166
A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard
{"title":"Effect of geometrical structure variations on strength and damage onset of cortical bone using multi-scale cohesive zone based finite element method.","authors":"A. Atthapreyangkul, M. Hoffman, G. Pearce, O. Standard","doi":"10.2139/ssrn.4236166","DOIUrl":"https://doi.org/10.2139/ssrn.4236166","url":null,"abstract":"Three-dimensional multi-scale finite element models were designed to examine the effects of geometrical structure variations on the damage onset in cortical bone at multiple structural scales. A cohesive zone finite element approach, together with anisotropic damage initiation criteria, is used to predict the onset of damage. The finite element models are developed to account for the onset of microdamage from the microscopic length scales consisting of collagen fibres, to the macroscopic level consisting of osteons and the Haversian canals. Numerical results indicated that the yield strain at the initiation of microcracks is independent of variations in the local mineral volume fraction at each structural scale. Further, the yield strain and strength properties of cortical bone are dependent on its structural anisotropy and hierarchical structure. A positive correlation is observed between bone strength and mineral content at each length scale.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105578"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41913130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness. 天然胶原交联剂生物修饰牙本质对树脂-牙本质结合耐久性和脱矿牙本质硬度的影响。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-11-01 DOI: 10.2139/ssrn.4226759
Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy
{"title":"Effect of dentin biomodification using natural collagen cross-linkers on the durability of the resin-dentin bond and demineralized dentin stiffness.","authors":"Ahmad Hassan El gindy, D. Sherief, Dalia I. El-Korashy","doi":"10.2139/ssrn.4226759","DOIUrl":"https://doi.org/10.2139/ssrn.4226759","url":null,"abstract":"OBJECTIVE\u0000The purpose of this study was to evaluate the effect of using natural cross-linkers as sumac and curcumin on the durability of the resin-dentin bond and stiffness of demineralized dentin matrix.\u0000\u0000\u0000METHODS\u0000Thirty sound molars were divided into 5 groups: Control (CO), Grape Seed extract (GSE), Cacao seed extract (CSE), Sumac extract (SE) and Curcumin extract (CE). The teeth had their coronal dentin exposed, etched, and pre-treated for 1 min with the extracts. Teeth were then bonded using Single-Bond II adhesive and 4 mm composite was built up on dentin surface. Teeth were sectioned into 1 × 1 × 8mm beams and their micro-tensile bond strength (μTBS) was tested after 24 h and 6 months of water storage. For stiffness testing, 15 teeth were sectioned to obtain dentin beams (1 × 1 × 6.5 mm), the beams were demineralized in 10% phosphoric acid then rinsed and divided into 5 groups. Beams were then immersed in their respective extract solution for 1 min after which they were subjected to a 3- point loading test using a universal testing machine to calculate their modulus of elasticity.\u0000\u0000\u0000RESULTS\u0000After 24 h, no significant difference in μTBS was shown between all groups. After 6 Months, GSE, CE, and SE showed significantly higher μTBS compared to CO (p ≥ 0.05). For the modulus of elasticity; only GSE showed a significantly higher modulus compared to other groups.\u0000\u0000\u0000CLINICAL RELEVANCE\u0000The application of grape seed extract, curcumin and sumac extract as dentin pre-treatments appear to be a promising approach to enhance the durability of the resin-dentin bond in a clinically relevant application time.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105551"},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49262127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens. 3D打印负载Ag和Cu的PLA和TPU表面对医院和食源性病原体的抗菌效果和力学性能的探索性研究。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-10-29 DOI: 10.2139/ssrn.4236167
Sotiriοs Ι. Εkonomou, S. Soe, A. Stratakos
{"title":"An explorative study on the antimicrobial effects and mechanical properties of 3D printed PLA and TPU surfaces loaded with Ag and Cu against nosocomial and foodborne pathogens.","authors":"Sotiriοs Ι. Εkonomou, S. Soe, A. Stratakos","doi":"10.2139/ssrn.4236167","DOIUrl":"https://doi.org/10.2139/ssrn.4236167","url":null,"abstract":"Antimicrobial 3D printed surfaces made of PLA and TPU polymers loaded with copper (Cu), and silver (Ag) nanoparticles (NPs) were developed via fused deposition modeling (FDM). The potential antimicrobial effect of the 3D printed surfaces against Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus was evaluated. Furthermore, the mechanical characteristics, including surface topology and morphology, tensile test of specimens manufactured in three different orientations (XY, XZ, and ZX), water absorption capacity, and surface wettability were also assessed. The results showed that both Cu and Ag-loaded 3D printed surfaces displayed a higher inhibitory effect against S. aureus and L. monocytogenes biofilms compared to S. Typhimurium and E. coli biofilms. The results of SEM analysis revealed a low void fraction for the TPU and no voids for the PLA samples achieved through optimization and the small height (0.1 mm) of the printed layers. The best performing specimen in terms of its tensile was XY, followed by ZX and XZ orientation, while it indicated that Cu and Ag-loaded material had a slightly stiffer response than plain PLA. Additionally, Cu and Ag-loaded 3D printed surfaces revealed the highest hydrophobicity compared to the plain polymers making them excellent candidates for biomedical and food production settings to prevent initial bacterial colonization. The approach taken in the current study offers new insights for developing antimicrobial 3D printed surfaces and equipment to enable their application towards the inhibition of the most common nosocomial and foodborne pathogens and reduce the risk of cross-contamination and disease outbreaks.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105536"},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43683673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Two-body wear resistance and fatigue survival of new Y-TZP and ATZ ceramics made with a new slip-casting method. 采用新的滑移铸造方法制备的新型Y-TZP和ATZ陶瓷的两体耐磨性和疲劳寿命。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-10-01 DOI: 10.2139/ssrn.4191229
J. Roulet, M. Sinhoreti, S.O.L.I.M.A.R.O.L.I.V.E.I.R.A. Pontes, M. Rocha
{"title":"Two-body wear resistance and fatigue survival of new Y-TZP and ATZ ceramics made with a new slip-casting method.","authors":"J. Roulet, M. Sinhoreti, S.O.L.I.M.A.R.O.L.I.V.E.I.R.A. Pontes, M. Rocha","doi":"10.2139/ssrn.4191229","DOIUrl":"https://doi.org/10.2139/ssrn.4191229","url":null,"abstract":"BACKGROUND\u0000Dental zirconium oxide restorations are milled from pre-sintered blocks or disks which are produced either with high isostatic pressure (HIP) or, simpler, a slurry technique. The objective was to perform a fatigue test and an in vitro wear simulation of two ceramics, yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) ceramic and a hybrid zirconium oxide-aluminum oxide ceramic, (ATZ) both produced either the classical way using high isostatic pressure (HIP, control) or with a slurry technique.\u0000\u0000\u0000MATERIALS AND METHODS\u0000Ten discs/group were subjected to a cyclic biaxial fatigue test using a staircase approach under water at 37 °C in a dynamic universal testing machine. The 2-body wear test was performed on eight lapped 12 mm thick cylindrical samples subjected to spherical (ø 6 mm) leucite ceramic antagonists in a CS-4 chewing simulator at 49 N force and 0.7 mm lateral movement for 600 k cycles and 4167 thermal cycles (5-55 °C). Volumetric wear was calculated based on laser-scanned surfaces. Selected samples of both tests were viewed in SEM.\u0000\u0000\u0000RESULTS\u0000All the ceramic specimens produced using the HIP method survived up to 1.2 M cycles with the maximum load of the equipment (1000 N) loading the specimens up to 1527 MPa. The fatigue limit stress at 1.2 M cycles for the Slurry ATZ samples was 946 MPa. For the Slurry Y-TZP samples the fatigue limit stress at 1.2 M cycles was 658 MPa. At 600 k cycles, all zirconium oxide ceramics showed no measurable wear and had a highly polished appearance. The leucite ceramic antagonists wear developed in a linear way. There was no difference between the materials produced with the slurry and the HIP process. ATZ ceramic produced significantly more wear than 3Y- TZP ceramic.\u0000\u0000\u0000CONCLUSIONS\u0000The HIP method provided higher fatigue strength than the Slurry manufacturing method. All HIP ceramics surpassed the limit threshold (1527 MPa) of the testing machine. The tested ceramics did not show any measurable wear but had worn the leucite reinforced glass ceramic antagonists for a considerable amount.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"136 1","pages":"105535"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42944594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modal analysis of implant-supported overdentures installed on differently positioned sets of dental implants. 种植支撑覆盖义齿安装在不同位置的牙种植体组的模态分析。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-10-01 DOI: 10.2139/ssrn.4196941
Mika Tsuno, Hidemi Nakata, S. Kuroda, Munemitsu Miyasaka, T. Sasaki, S. Kasugai, E. Marukawa
{"title":"A modal analysis of implant-supported overdentures installed on differently positioned sets of dental implants.","authors":"Mika Tsuno, Hidemi Nakata, S. Kuroda, Munemitsu Miyasaka, T. Sasaki, S. Kasugai, E. Marukawa","doi":"10.2139/ssrn.4196941","DOIUrl":"https://doi.org/10.2139/ssrn.4196941","url":null,"abstract":"This study evaluated the three vibration characteristics, namely, natural frequency, damping ratio, and natural mode, together with maximum displacement of a two-implant-supported overdenture (IOD) at different locator attachment positions using experimental modal analysis (EMA). Edentulous mandibular models with a gingival thickness of 1 mm or 3 mm were prepared, into which dental implants were placed using a fully guided surgical template designed with simulation software, the locator abutments were fastened, and the IODs were then fabricated. The implant positions were bilaterally marked at the lateral incisor, first premolar, and first molar regions. EMA was performed by hammering the test structures to measure the impulse response and obtain the vibration characteristics (n = 5). The Kruskal-Wallis test was performed for natural frequency and maximum displacement, and the Games-Howell test for damping ratio. The significance level was set at α = 0.05. The study indicated that the gingival thickness had a significant effect on the vibration characteristics. Moreover, the natural frequency and damping ratio results showed that the vibration subsided faster when the attachment was placed on the molar implants in the thick gingival model. Furthermore, according to the effect of lateral force on IODs, the difference in maximum displacement between the anterior and posterior regions of the IOD was smaller when the attachments were designed on the pair of lateral incisors. Thus, within the limits of this experiment, our results suggested that two anterior implant-supported IODs are preferable treatment designs in terms of vibration engineering, especially when the gingiva is thick; the molar attachment design could be considered for thin gingival conditions. The differences in gingival thickness and abutment position affected the vibration characteristics of the IOD. Further in vivo studies would be necessary to validate the implant positions and their IOD designs for the mandibular edentulous shapes and the occlusal relationship.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105492"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46021897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimum design requirements for a poroelastic mimic of articular cartilage. 关节软骨多孔弹性模拟物的最低设计要求。
Journal of the mechanical behavior of biomedical materials Pub Date : 2022-10-01 DOI: 10.2139/ssrn.4207861
W. Tan, A. Moore, M. Stevens
{"title":"Minimum design requirements for a poroelastic mimic of articular cartilage.","authors":"W. Tan, A. Moore, M. Stevens","doi":"10.2139/ssrn.4207861","DOIUrl":"https://doi.org/10.2139/ssrn.4207861","url":null,"abstract":"The exceptional functional performance of articular cartilage (load-bearing and lubrication) is attributed to its poroelastic structure and resulting interstitial fluid pressure. Despite this, there remains no engineered cartilage repair material capable of achieving physiologically relevant poroelasticity. In this work we develop in silico models to guide the design approach for poroelastic mimics of articular cartilage. We implement the constitutive models in FEBio, a PDE solver for multiphasic mechanics problems in biological and soft materials. We investigate the influence of strain rate, boundary conditions at the contact interface, and fiber modulus on the reaction force and load sharing between the solid and fluid phases. The results agree with the existing literature that when fibers are incorporated the fraction of load supported by fluid pressure is greatly amplified and increases with the fiber modulus. This result demonstrates that a stiff fibrous phase is a primary design requirement for poroelastic mimics of articular cartilage. The poroelastic model is fit to experimental stress-relaxation data from bovine and porcine cartilage to determine if sufficient design constraints have been identified. In addition, we fit experimental data from FiHy™, an engineered material which is claimed to be poroelastic. The fiber-reinforced poroelastic model was able to capture the primary physics of these materials and demonstrates that FiHy™ is beginning to approach a cartilage-like poroelastic response. We also develop a fiber-reinforced poroelastic model with a bonded interface (rigid contact) to fit stress relaxation data from an osteochondral explant and FiHy™ + bone substitute. The model fit quality is similar for both the chondral and osteochondral configurations and clearly captures the first order physics. Based on this, we propose that physiological poroelastic mimics of articular cartilage should be developed under a fiber-reinforced poroelastic framework.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"137 1","pages":"105528"},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48556889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信