Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance.

Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril
{"title":"Potential of auxetic designs in endovascular aortic repair: A computational study of their mechanical performance.","authors":"Rahul Vellaparambil, W. Han, Pierluigi Di Giovanni, S. Avril","doi":"10.2139/ssrn.4258753","DOIUrl":null,"url":null,"abstract":"With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.","PeriodicalId":94117,"journal":{"name":"Journal of the mechanical behavior of biomedical materials","volume":"138 1","pages":"105644"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the mechanical behavior of biomedical materials","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.2139/ssrn.4258753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the rising popularity of endovascular aortic repair (EVAR) for aortic aneurysms and dissections, there is a crucial need for investigating the delayed appearance of post-EVAR complications such as stent-graft kinking, fracture and migration respectively. These complications have been noted to be influenced by the radial stiffness and bending flexibility attributes of stent-grafts. Auxetic designs with negative Poisson's ratio offer interesting advantages such as enhanced fracture toughness, superior indentation resistance and adaptive stiffness in response to intricate morphology for stenting applications over conventional stent designs. The objective of this study is to propose different auxetic stent candidates and to compare their mechanical performance with two conventional stent candidates for endovascular applications using numerical simulation through crimp/crushing tests for their radial stiffness and three-point bending/kinking tests for their flexibility, respectively. The results demonstrate that the novel hybrid auxetic designs (CRE and CSTAR) possess the best trade-off between radial stiffness and bending flexibility characteristics among all candidates for stent-graft applications.
血管内主动脉修复中辅助设计的潜力:其力学性能的计算研究。
随着主动脉瘤和夹层血管内主动脉修复术(EVAR)的日益普及,迫切需要研究EVAR术后并发症的延迟出现,如支架移植物扭结、骨折和移位。已经注意到这些并发症受到支架移植物的径向刚度和弯曲柔性特性的影响。与传统支架设计相比,具有负泊松比的辅助设计提供了有趣的优势,如增强的断裂韧性、优异的抗压痕性和自适应刚度,以应对支架应用的复杂形态。本研究的目的是提出不同的膨胀支架候选物,并通过分别进行径向刚度的卷曲/挤压试验和柔性的三点弯曲/扭结试验的数值模拟,将其与血管内应用的两种传统支架候选物的机械性能进行比较。结果表明,在支架移植物应用的所有候选者中,新型混合膨胀设计(CRE和CSTAR)在径向刚度和弯曲柔性特性之间具有最佳的折衷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信