Jasmin Joseph, P Ramesh, K Sayooj, M Unnikrishnan, G Unnikrishnan
{"title":"Functionalized Polyvinyl Alcohol-Gelatin Graft for the Treatment of Tympanic Membrane Perforations.","authors":"Jasmin Joseph, P Ramesh, K Sayooj, M Unnikrishnan, G Unnikrishnan","doi":"10.1002/jbm.a.37818","DOIUrl":"https://doi.org/10.1002/jbm.a.37818","url":null,"abstract":"<p><p>The majority of issues related to patients suffering from conductive hearing loss and repeated otitis media are due to chronic tympanic membrane perforations. This generally requires a surgical procedure called tympanoplasty to seal the perforation where autologous grafts are used to reconstruct the membrane. However, the limitations associated with surgical procedures and the limited graft-material availability often cause difficulties in this route; demanding novel procedures or materials. The basic requirements for a synthetic graft-material for this application cover excellent cell adherence with no immune response and inflammatory actions at the site of implantation along with wound-healing characteristics and sufficient acoustic and mechanical properties. With this aim, an innovative graft material has been developed with polyvinyl alcohol (PVA) as the base component through this work. To ensure better cell adhesion and proliferation, a natural polymer, gelatin, has been cross-linked with PVA through a maleic anhydride (MA) intermediate; with a two-step synthesis protocol. The mechanical strength of graft material has been found to be tunable by adjusting the ratio of gelatin with PVA. Laser Doppler Vibrometry (LDV) has been employed to evaluate its acoustic properties upon exposure to a frequency sweep of 10-8000 Hz. The in vitro biocompatibility assays using L929 and RPMI 2650 cells substantiate the material's compatibility; ensuring its potential clinical applications toward chronic tympanic membrane perforations.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kübra Solak, Mustafa Atiş, Ahmet Emre Kasapoğlu, Adem Karaman, Ahmet Mavi
{"title":"Metal Nanoparticles for Simultaneous Use in AC Magnetic Field Hyperthermia and Magnetic Resonance Imaging.","authors":"Kübra Solak, Mustafa Atiş, Ahmet Emre Kasapoğlu, Adem Karaman, Ahmet Mavi","doi":"10.1002/jbm.a.37817","DOIUrl":"https://doi.org/10.1002/jbm.a.37817","url":null,"abstract":"<p><p>Magnetic nanoparticles (MNPs) are produced for both diagnosis and treatment due to their simultaneous availability in magnetic resonance imaging (MRI) and magnetic hyperthermia (MHT). Extensive investigations focus on developing MNPs for individual MHT or MRI applications, but the development of MNPs for theragnostic applications has received very little attention. In this study, through efficient examination of synthesis conditions such as metal precursors, reaction parameters, and solvent choices, we aimed to optimize MNP production for effective utilization for MHT and MRI simultaneously. MNPs were synthesized by thermal decomposition under 17 different conditions and deeply characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The heating efficiency of MNPs under an alternating current (AC) magnetic field was quantified, while MRI performance was evaluated through agar phantom experiments. Our findings highlight the crucial role of benzyl ether in metal ion reduction and size control. Metal-doped iron oxide MNPs displayed promise for MHT, whereas Mn-doped iron oxide MNPs exhibited enhanced MRI capabilities. Consequently, five engineered MNPs were considered potential candidates for further studies, demonstrating their dual ability in MRI and MHT.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Megan M Allyn, Annie K Ryan, Grace Rivera, Esther Mamo, Joshua Bopp, Sebastian Martinez Hernandez, Julie Racine, Eric J Miller, Heather L Chandler, Katelyn E Swindle-Reilly
{"title":"In Vivo Assessment of an Antioxidant Hydrogel Vitreous Substitute.","authors":"Megan M Allyn, Annie K Ryan, Grace Rivera, Esther Mamo, Joshua Bopp, Sebastian Martinez Hernandez, Julie Racine, Eric J Miller, Heather L Chandler, Katelyn E Swindle-Reilly","doi":"10.1002/jbm.a.37813","DOIUrl":"https://doi.org/10.1002/jbm.a.37813","url":null,"abstract":"<p><p>The vitreous humor undergoes liquefaction with age, resulting in complications that may require a vitrectomy, or surgical removal of the vitreous from the eye. Silicone oil, a common vitreous substitute, lacks properties similar to the natural vitreous. In particular, it lacks antioxidants that may be necessary to reduce oxidative stress in the eye. The purpose of this study was to evaluate antioxidant-loaded hydrogel vitreous substitutes in a pilot in vivo study. Ascorbic acid and glutathione were loaded into synthesized PEGDA hydrogels. Following vitrectomy, experimental antioxidant hydrogels or silicone oil were injected into one eye of rabbits, while the other eye served as untreated or sham control. Ophthalmic assessments, including electroretinography, were performed. Levels of glutathione and ascorbic acid were higher in the eyes treated with the antioxidant-loaded hydrogel vitreous substitute, although this was not found to be significant after 28 days. There were no statistically significant differences between groups with respect to clinical examination, and ocular health scores, electroretinograms, and histology were normal. These results indicate minimal concerns for the hydrogel formulation or high levels of antioxidants. Future research will assess the capability of vitreous substitutes to prolong antioxidant release, with the goal of minimizing cataract after vitrectomy.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eline-Claire Grosfeld, Natasja W M van Dijk, Dietmar J O Ulrich, Antonios G Mikos, John A Jansen, Jeroen J J P van den Beucken
{"title":"Compositional Variations in Calcium Phosphate Cement and Poly(Lactic-Co-Glycolic-Acid) Porogens Do Not Affect the Orthotopic Performance of Calcium Phosphate Cement/Poly(Lactic-Co-Glycolic-Acid) Cements.","authors":"Eline-Claire Grosfeld, Natasja W M van Dijk, Dietmar J O Ulrich, Antonios G Mikos, John A Jansen, Jeroen J J P van den Beucken","doi":"10.1002/jbm.a.37827","DOIUrl":"https://doi.org/10.1002/jbm.a.37827","url":null,"abstract":"<p><p>Calcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e., microspheres versus microparticles) on the biological performance of CPC/PLGA has not yet been investigated. Consequently, we here aimed to evaluate comparatively various CPC/PLGA formulations varying in CPC composition and PLGA porogen morphology on their performance in a rabbit femoral condyle bone defect model. CPCs with a composition of 85 wt% α-TCP, 15 wt% dicalcium phosphate anhydrate (DCPA) and 5 wt% precipitated hydroxyapatite (pHA), or 100 wt% α-TCP were combined with spherical or irregularly shaped PLGA porogens (CPC/PLGA ratio of 60:40 wt% for all formulations). All CPC/PLGA formulations were applied via injection in bone defects, as created in the femoral condyle of rabbits, and retrieved for histological evaluation after 6 and 12 weeks of implantation. Descriptive histology and quantitative histomorphometry (i.e., material degradation and new bone formation) were used for analyses. Descriptively, all CPC/PLGA formulations showed material degradation at the periphery of the cement within 6 weeks of implantation. After 12 weeks, bone formation was observed extending into the defect core, replacing the degraded CPC/PLGA material. Quantitatively, similar material degradation (up to 87%) and new bone formation (up to 28%) values were observed, irrespective of compositional variations of CPC/PLGA formulations. These data prove that neither the CPC compositions nor the PLGA porogen morphologies as used in this work affect the biological performance of CPC/PLGA formulations in a rabbit femoral condyle bone defect model.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charley M Goodwin, Annsley O Mace, Jeremy L Gilbert
{"title":"Tin Silver Alloy as a Biomaterial: Corrosion Characteristics and Cellular Behavior.","authors":"Charley M Goodwin, Annsley O Mace, Jeremy L Gilbert","doi":"10.1002/jbm.a.37822","DOIUrl":"https://doi.org/10.1002/jbm.a.37822","url":null,"abstract":"<p><p>Tin-silver (Sn-Ag) has been used as a permanently implanted biomaterial within the Essure female sterilization device and in dental amalgams; however, little data exist for Sn-Ag's corrosion characteristics and/or cellular interactions. In this study, to assess its suitability as a degradable metallic biomaterial, 95-5 wt% Sn-Ag solder was subjected to corrosion testing including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and anodic potentiodynamic polarization in phosphate-buffered saline (PBS) and cell culture media (with serum proteins) at room temperature (25°C) and body temperature (37°C). Cell culture studies were also performed. Mouse pre-osteoblast cells (MC3T3-E1) were cultured in media on Sn-Ag discs and monitored over 24 h at potentials below, around, or above Sn-Ag's breakdown potential, fixed, and then viewed using SEM. Separately, cells on tissue culture plastic were subjected to increasing concentrations of SnCl<sub>2</sub> in media for 24 h before a live-dead imaging at each concentration to determine cell viability and area fraction covered when compared with a control well. The results show both passive (in PBS), with a breakdown potential of -250 mV versus Ag/AgCl and active polarization behavior (in AMEM with proteins). EIS results showed polarization resistance (R<sub>p</sub>) in the 10<sup>5</sup> Ωcm<sup>2</sup> range but decreased generally with increasing temperature (p < 0.05). Cells were well attached on Sn-Ag surfaces at OCP and below the breakdown potential, but when anodically polarized, cells reduced their spread area and became more spherical, indicating less viability. SnCl<sub>2</sub> exhibited a dose-dependent killing effect on MC3T3 cells with a lethal dose for 50% of about 0.5 mM. The results of these experiments show that Sn-Ag alloys can be considered as degradable metallic biomaterials.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation.","authors":"Govinda Bhattarai, Saroj Kumar Shrestha, Shankar Rijal, Sung-Ho Kook, Jeong-Chae Lee","doi":"10.1002/jbm.a.37812","DOIUrl":"https://doi.org/10.1002/jbm.a.37812","url":null,"abstract":"<p><p>Local implantation or supplementation of magnesium gluconate (MgG) is being investigated as an effective approach to bone repair. Although studies have highlighted the possible mechanisms in Mg ion-stimulated new bone formation, the role of MgG in healing bone defects and the signaling mechanisms are not yet completely understood. In this study, we explored how supplemental MgG has bone-specific beneficial effects by delivering MgG locally and orally in animal models. We fabricated MgG-incorporated (CMC-M) and -free chitosan (CMC) scaffolds with good microstructures and biocompatible properties. Implantation with CMC-M enhanced bone healing in rat model of mandible defects, compared with CMC, by activating Wnt signals and Wnt-related osteogenic and angiogenic molecules. Oral supplementation with MgG also stimulated bone healing in mouse model of femoral defects along with the increases in Wnt3a and angiogenic and osteogenic factors. Supplemental MgG did not alter nature bone accrual and bone marrow (BM) microenvironment in adult mouse model, but enhanced the functioning of BM stromal cells (BMSCs). Furthermore, MgG directly stimulated the induction of Wnt signaling-, angiogenesis-, and osteogenesis-related molecules in cultures of BMSCs, as well as triggered the migration of endothelial cells. These results suggest that supplemental MgG improves bone repair in a way that is synergistically enhanced by Wnt signal-associated angiogenic and osteogenic molecules. Overall, this study indicates that supplemental MgG might ameliorate oxidative damage in the BM, improve the functionality of BM stem cells, and maintain BM-microenvironmental homeostasis.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth.","authors":"María-Del-Mar Romero-Alemán, José-Manuel Pérez-Galván, José-Enrique Hernández-Rodríguez, Maximina Monzón-Mayor","doi":"10.1002/jbm.a.37825","DOIUrl":"https://doi.org/10.1002/jbm.a.37825","url":null,"abstract":"<p><p>This pilot study investigated the potential of aloe vera (AV) to promote neurite outgrowth in organotypic dorsal root ganglia (DRG) explants (n = 230) from neonatal rats (n = 15). Using this in vitro model of acute axotomy, we assessed neurite outgrowth exceeding 1.5 times the explant diameter (viable explants) and measured the longest neurite length. These parameters were evaluated under control conditions and in cultures supplemented with commercial AV and four aligned scaffolds: poly-L-lactate (PLLA), polydioxanone (PDS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and blended PHBV/AV. After 6 days of culture, explants were immunostained using neuron-specific marker Tuj1 and Schwann cell marker S100. Measurements were obtained with Image J software and analyzed using Jamovi 2.3. In control and AV dilution media, the study revealed radial tissue growth from the explant body with randomly oriented neurites, whereas in all scaffolds, bidirectional tissue growth occurred parallel to nanofibers. Binomial logistic regression analyses indicated that viable explants were more likely in the control group compared to PDS (p = 0.0042) and PHBV (p < 0.0001), with non-significant differences when compared to AV dilution, PLLA, and PHBV/AV. AV dilution showed a greater association with viable explants than PLLA (p = 0.0459), while non-significant difference was found between AV dilution and PHBV/AV. Additionally, the PHBV/AV scaffold predicted higher odds of viable explants than PLLA (p = 0.0479), PDS (p = 0.0001), and PHBV (p < 0.0001). Groups with similar probabilities of obtaining viable explants (control, AV dilution, and PHBV/AV) exhibited non-significant differences in their longest neurite lengths. In conclusion, control, AV dilution, and PHBV/AV yielded the highest probability of developing viable explants and the longest neurite lengths. This is the first study demonstrating the direct permissiveness of AV for axonal outgrowth. Furthermore, the blended PHBV/AV scaffold showed significant potential as a suitable scaffold for axonal regrowth and Schwann cell migration, ensuring controlled tissue formation for tissue engineering applications.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gaby D Lizana-Vasquez, Shanmathi Ramasubramanian, Amin Davarzani, Dan Cappabianca, Krishanu Saha, Lohitash Karumbaiah, Madeline Torres-Lugo
{"title":"In Vitro Assessment of Thermo-Responsive Scaffold as a 3D Synthetic Matrix for CAR-T Potency Testing Against Glioblastoma Spheroids.","authors":"Gaby D Lizana-Vasquez, Shanmathi Ramasubramanian, Amin Davarzani, Dan Cappabianca, Krishanu Saha, Lohitash Karumbaiah, Madeline Torres-Lugo","doi":"10.1002/jbm.a.37823","DOIUrl":"https://doi.org/10.1002/jbm.a.37823","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated exceptional efficacy against hematological malignancies, but notably less against solid tumors. To overcome this limitation, it is critical to investigate antitumor CAR-T cell potency in synthetic 3D microenvironments that can simulate the physical barriers presented by solid tumors. The overall goal of this study was the preliminary assessment of a synthetic thermo-responsive material as a substrate for in vitro co-cultures of anti-disialoganglioside (GD2) CAR-T cells and patient-derived glioblastoma (GBM) spheroids. Independent co-culture experiments demonstrated that the encapsulation process did not adversely affect the cell cycle progression of glioma stem cells (GSCs) or CAR-T cells. GSC spheroids grew over time within the terpolymer scaffold, when seeded in the same ratio as the suspension control. Co-cultures of CAR-T cells in suspension with hydrogel-encapsulated GSC spheroids demonstrated that CAR-T cells could migrate through the hydrogel and target the encapsulated GSC spheroids. CAR-T cells killed approximately 80% of encapsulated GSCs, while maintaining effective CD4:CD8 T cell ratios and secreting inflammatory cytokines after interacting with GD2-expressing GSCs. Importantly, the scaffolds also facilitated cell harvesting for downstream cellular analysis. This study demonstrated that a synthetic 3D terpolymer hydrogel can serve as an artificial scaffold to investigate cellular immunotherapeutic potency against solid tumors.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benedict Rothammer, Klara Feile, Siegfried Werner, Rainer Frank, Marcel Bartz, Sandro Wartzack, Dirk W Schubert, Dietmar Drummer, Rainer Detsch, Bo Wang, Andreas Rosenkranz, Max Marian
{"title":"Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants.","authors":"Benedict Rothammer, Klara Feile, Siegfried Werner, Rainer Frank, Marcel Bartz, Sandro Wartzack, Dirk W Schubert, Dietmar Drummer, Rainer Detsch, Bo Wang, Andreas Rosenkranz, Max Marian","doi":"10.1002/jbm.a.37819","DOIUrl":"https://doi.org/10.1002/jbm.a.37819","url":null,"abstract":"<p><p>There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liam Power, Rita Shuhmaher, Philip Houtz, Jinpeng Chen, Sara Rudolph, John Yuen, Majd Machour, Emily Levy, Limin Wu, Shulamit Levenberg, Michael Whalen, Ying Chen, David L Kaplan
{"title":"3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury.","authors":"Liam Power, Rita Shuhmaher, Philip Houtz, Jinpeng Chen, Sara Rudolph, John Yuen, Majd Machour, Emily Levy, Limin Wu, Shulamit Levenberg, Michael Whalen, Ying Chen, David L Kaplan","doi":"10.1002/jbm.a.37816","DOIUrl":"https://doi.org/10.1002/jbm.a.37816","url":null,"abstract":"<p><p>The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}