Journal of biomedical materials research. Part A最新文献

筛选
英文 中文
Compositional Variations in Calcium Phosphate Cement and Poly(Lactic-Co-Glycolic-Acid) Porogens Do Not Affect the Orthotopic Performance of Calcium Phosphate Cement/Poly(Lactic-Co-Glycolic-Acid) Cements. 磷酸钙水泥和聚(乳酸-共缩乙二醇-酸)致孔剂的成分变化不会影响磷酸钙水泥/聚(乳酸-共缩乙二醇-酸)水泥的矫形性能。
Journal of biomedical materials research. Part A Pub Date : 2024-10-29 DOI: 10.1002/jbm.a.37827
Eline-Claire Grosfeld, Natasja W M van Dijk, Dietmar J O Ulrich, Antonios G Mikos, John A Jansen, Jeroen J J P van den Beucken
{"title":"Compositional Variations in Calcium Phosphate Cement and Poly(Lactic-Co-Glycolic-Acid) Porogens Do Not Affect the Orthotopic Performance of Calcium Phosphate Cement/Poly(Lactic-Co-Glycolic-Acid) Cements.","authors":"Eline-Claire Grosfeld, Natasja W M van Dijk, Dietmar J O Ulrich, Antonios G Mikos, John A Jansen, Jeroen J J P van den Beucken","doi":"10.1002/jbm.a.37827","DOIUrl":"https://doi.org/10.1002/jbm.a.37827","url":null,"abstract":"<p><p>Calcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e., microspheres versus microparticles) on the biological performance of CPC/PLGA has not yet been investigated. Consequently, we here aimed to evaluate comparatively various CPC/PLGA formulations varying in CPC composition and PLGA porogen morphology on their performance in a rabbit femoral condyle bone defect model. CPCs with a composition of 85 wt% α-TCP, 15 wt% dicalcium phosphate anhydrate (DCPA) and 5 wt% precipitated hydroxyapatite (pHA), or 100 wt% α-TCP were combined with spherical or irregularly shaped PLGA porogens (CPC/PLGA ratio of 60:40 wt% for all formulations). All CPC/PLGA formulations were applied via injection in bone defects, as created in the femoral condyle of rabbits, and retrieved for histological evaluation after 6 and 12 weeks of implantation. Descriptive histology and quantitative histomorphometry (i.e., material degradation and new bone formation) were used for analyses. Descriptively, all CPC/PLGA formulations showed material degradation at the periphery of the cement within 6 weeks of implantation. After 12 weeks, bone formation was observed extending into the defect core, replacing the degraded CPC/PLGA material. Quantitatively, similar material degradation (up to 87%) and new bone formation (up to 28%) values were observed, irrespective of compositional variations of CPC/PLGA formulations. These data prove that neither the CPC compositions nor the PLGA porogen morphologies as used in this work affect the biological performance of CPC/PLGA formulations in a rabbit femoral condyle bone defect model.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tin Silver Alloy as a Biomaterial: Corrosion Characteristics and Cellular Behavior. 作为生物材料的锡银合金:腐蚀特性与细胞行为
Journal of biomedical materials research. Part A Pub Date : 2024-10-29 DOI: 10.1002/jbm.a.37822
Charley M Goodwin, Annsley O Mace, Jeremy L Gilbert
{"title":"Tin Silver Alloy as a Biomaterial: Corrosion Characteristics and Cellular Behavior.","authors":"Charley M Goodwin, Annsley O Mace, Jeremy L Gilbert","doi":"10.1002/jbm.a.37822","DOIUrl":"https://doi.org/10.1002/jbm.a.37822","url":null,"abstract":"<p><p>Tin-silver (Sn-Ag) has been used as a permanently implanted biomaterial within the Essure female sterilization device and in dental amalgams; however, little data exist for Sn-Ag's corrosion characteristics and/or cellular interactions. In this study, to assess its suitability as a degradable metallic biomaterial, 95-5 wt% Sn-Ag solder was subjected to corrosion testing including open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and anodic potentiodynamic polarization in phosphate-buffered saline (PBS) and cell culture media (with serum proteins) at room temperature (25°C) and body temperature (37°C). Cell culture studies were also performed. Mouse pre-osteoblast cells (MC3T3-E1) were cultured in media on Sn-Ag discs and monitored over 24 h at potentials below, around, or above Sn-Ag's breakdown potential, fixed, and then viewed using SEM. Separately, cells on tissue culture plastic were subjected to increasing concentrations of SnCl<sub>2</sub> in media for 24 h before a live-dead imaging at each concentration to determine cell viability and area fraction covered when compared with a control well. The results show both passive (in PBS), with a breakdown potential of -250 mV versus Ag/AgCl and active polarization behavior (in AMEM with proteins). EIS results showed polarization resistance (R<sub>p</sub>) in the 10<sup>5</sup> Ωcm<sup>2</sup> range but decreased generally with increasing temperature (p < 0.05). Cells were well attached on Sn-Ag surfaces at OCP and below the breakdown potential, but when anodically polarized, cells reduced their spread area and became more spherical, indicating less viability. SnCl<sub>2</sub> exhibited a dose-dependent killing effect on MC3T3 cells with a lethal dose for 50% of about 0.5 mM. The results of these experiments show that Sn-Ag alloys can be considered as degradable metallic biomaterials.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142549826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation. 通过血管生成和 Wnt 信号相关的骨生成激活,补充葡萄糖酸镁可增强支架介导的新骨形成和自然骨愈合。
Journal of biomedical materials research. Part A Pub Date : 2024-10-27 DOI: 10.1002/jbm.a.37812
Govinda Bhattarai, Saroj Kumar Shrestha, Shankar Rijal, Sung-Ho Kook, Jeong-Chae Lee
{"title":"Supplemental Magnesium Gluconate Enhances Scaffold-Mediated New Bone Formation and Natural Bone Healing by Angiogenic- and Wnt Signal-Associated Osteogenic Activation.","authors":"Govinda Bhattarai, Saroj Kumar Shrestha, Shankar Rijal, Sung-Ho Kook, Jeong-Chae Lee","doi":"10.1002/jbm.a.37812","DOIUrl":"https://doi.org/10.1002/jbm.a.37812","url":null,"abstract":"<p><p>Local implantation or supplementation of magnesium gluconate (MgG) is being investigated as an effective approach to bone repair. Although studies have highlighted the possible mechanisms in Mg ion-stimulated new bone formation, the role of MgG in healing bone defects and the signaling mechanisms are not yet completely understood. In this study, we explored how supplemental MgG has bone-specific beneficial effects by delivering MgG locally and orally in animal models. We fabricated MgG-incorporated (CMC-M) and -free chitosan (CMC) scaffolds with good microstructures and biocompatible properties. Implantation with CMC-M enhanced bone healing in rat model of mandible defects, compared with CMC, by activating Wnt signals and Wnt-related osteogenic and angiogenic molecules. Oral supplementation with MgG also stimulated bone healing in mouse model of femoral defects along with the increases in Wnt3a and angiogenic and osteogenic factors. Supplemental MgG did not alter nature bone accrual and bone marrow (BM) microenvironment in adult mouse model, but enhanced the functioning of BM stromal cells (BMSCs). Furthermore, MgG directly stimulated the induction of Wnt signaling-, angiogenesis-, and osteogenesis-related molecules in cultures of BMSCs, as well as triggered the migration of endothelial cells. These results suggest that supplemental MgG improves bone repair in a way that is synergistically enhanced by Wnt signal-associated angiogenic and osteogenic molecules. Overall, this study indicates that supplemental MgG might ameliorate oxidative damage in the BM, improve the functionality of BM stem cells, and maintain BM-microenvironmental homeostasis.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth. 芦荟溶液和含有聚(3-羟基丁酸-Co-3-羟基戊酸)的混合纳米纤维作为神经元生长基质的潜力。
Journal of biomedical materials research. Part A Pub Date : 2024-10-27 DOI: 10.1002/jbm.a.37825
María-Del-Mar Romero-Alemán, José-Manuel Pérez-Galván, José-Enrique Hernández-Rodríguez, Maximina Monzón-Mayor
{"title":"The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth.","authors":"María-Del-Mar Romero-Alemán, José-Manuel Pérez-Galván, José-Enrique Hernández-Rodríguez, Maximina Monzón-Mayor","doi":"10.1002/jbm.a.37825","DOIUrl":"https://doi.org/10.1002/jbm.a.37825","url":null,"abstract":"<p><p>This pilot study investigated the potential of aloe vera (AV) to promote neurite outgrowth in organotypic dorsal root ganglia (DRG) explants (n = 230) from neonatal rats (n = 15). Using this in vitro model of acute axotomy, we assessed neurite outgrowth exceeding 1.5 times the explant diameter (viable explants) and measured the longest neurite length. These parameters were evaluated under control conditions and in cultures supplemented with commercial AV and four aligned scaffolds: poly-L-lactate (PLLA), polydioxanone (PDS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and blended PHBV/AV. After 6 days of culture, explants were immunostained using neuron-specific marker Tuj1 and Schwann cell marker S100. Measurements were obtained with Image J software and analyzed using Jamovi 2.3. In control and AV dilution media, the study revealed radial tissue growth from the explant body with randomly oriented neurites, whereas in all scaffolds, bidirectional tissue growth occurred parallel to nanofibers. Binomial logistic regression analyses indicated that viable explants were more likely in the control group compared to PDS (p = 0.0042) and PHBV (p < 0.0001), with non-significant differences when compared to AV dilution, PLLA, and PHBV/AV. AV dilution showed a greater association with viable explants than PLLA (p = 0.0459), while non-significant difference was found between AV dilution and PHBV/AV. Additionally, the PHBV/AV scaffold predicted higher odds of viable explants than PLLA (p = 0.0479), PDS (p = 0.0001), and PHBV (p < 0.0001). Groups with similar probabilities of obtaining viable explants (control, AV dilution, and PHBV/AV) exhibited non-significant differences in their longest neurite lengths. In conclusion, control, AV dilution, and PHBV/AV yielded the highest probability of developing viable explants and the longest neurite lengths. This is the first study demonstrating the direct permissiveness of AV for axonal outgrowth. Furthermore, the blended PHBV/AV scaffold showed significant potential as a suitable scaffold for axonal regrowth and Schwann cell migration, ensuring controlled tissue formation for tissue engineering applications.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vitro Assessment of Thermo-Responsive Scaffold as a 3D Synthetic Matrix for CAR-T Potency Testing Against Glioblastoma Spheroids. 体外评估作为三维合成基质的热响应支架,用于针对胶质母细胞瘤实体的 CAR-T 效能测试。
Journal of biomedical materials research. Part A Pub Date : 2024-10-26 DOI: 10.1002/jbm.a.37823
Gaby D Lizana-Vasquez, Shanmathi Ramasubramanian, Amin Davarzani, Dan Cappabianca, Krishanu Saha, Lohitash Karumbaiah, Madeline Torres-Lugo
{"title":"In Vitro Assessment of Thermo-Responsive Scaffold as a 3D Synthetic Matrix for CAR-T Potency Testing Against Glioblastoma Spheroids.","authors":"Gaby D Lizana-Vasquez, Shanmathi Ramasubramanian, Amin Davarzani, Dan Cappabianca, Krishanu Saha, Lohitash Karumbaiah, Madeline Torres-Lugo","doi":"10.1002/jbm.a.37823","DOIUrl":"https://doi.org/10.1002/jbm.a.37823","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated exceptional efficacy against hematological malignancies, but notably less against solid tumors. To overcome this limitation, it is critical to investigate antitumor CAR-T cell potency in synthetic 3D microenvironments that can simulate the physical barriers presented by solid tumors. The overall goal of this study was the preliminary assessment of a synthetic thermo-responsive material as a substrate for in vitro co-cultures of anti-disialoganglioside (GD2) CAR-T cells and patient-derived glioblastoma (GBM) spheroids. Independent co-culture experiments demonstrated that the encapsulation process did not adversely affect the cell cycle progression of glioma stem cells (GSCs) or CAR-T cells. GSC spheroids grew over time within the terpolymer scaffold, when seeded in the same ratio as the suspension control. Co-cultures of CAR-T cells in suspension with hydrogel-encapsulated GSC spheroids demonstrated that CAR-T cells could migrate through the hydrogel and target the encapsulated GSC spheroids. CAR-T cells killed approximately 80% of encapsulated GSCs, while maintaining effective CD4:CD8 T cell ratios and secreting inflammatory cytokines after interacting with GD2-expressing GSCs. Importantly, the scaffolds also facilitated cell harvesting for downstream cellular analysis. This study demonstrated that a synthetic 3D terpolymer hydrogel can serve as an artificial scaffold to investigate cellular immunotherapeutic potency against solid tumors.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ti3C2Tx-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants. Ti3C2Tx-UHMWPE 纳米复合材料--增强生物医学植入物的耐磨性。
Journal of biomedical materials research. Part A Pub Date : 2024-10-24 DOI: 10.1002/jbm.a.37819
Benedict Rothammer, Klara Feile, Siegfried Werner, Rainer Frank, Marcel Bartz, Sandro Wartzack, Dirk W Schubert, Dietmar Drummer, Rainer Detsch, Bo Wang, Andreas Rosenkranz, Max Marian
{"title":"Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-UHMWPE Nanocomposites-Towards an Enhanced Wear-Resistance of Biomedical Implants.","authors":"Benedict Rothammer, Klara Feile, Siegfried Werner, Rainer Frank, Marcel Bartz, Sandro Wartzack, Dirk W Schubert, Dietmar Drummer, Rainer Detsch, Bo Wang, Andreas Rosenkranz, Max Marian","doi":"10.1002/jbm.a.37819","DOIUrl":"https://doi.org/10.1002/jbm.a.37819","url":null,"abstract":"<p><p>There is an urgent need to enhance the mechanical and biotribological performance of polymeric materials utilized in biomedical devices such as load-bearing artificial joints, notably ultrahigh molecular weight polyethylene (UHMWPE). While two-dimensional (2D) materials like graphene, graphene oxide (GO), reduced GO, or hexagonal boron nitride (h-BN) have shown promise as reinforcement phases in polymer matrix composites (PMCs), the potential of MXenes, known for their chemical inertness, mechanical robustness, and wear-resistance, remains largely unexplored in biotribology. This study aims to address this gap by fabricating Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-UHMWPE nanocomposites using compression molding. Primary objectives include enhancements in mechanical properties, biocompatibility, and biotribological performance, particularly in terms of friction and wear resistance in cobalt chromium alloy pin-on-UHMWPE disk experiments lubricated by artificial synovial fluid. Thereby, no substantial changes in the indentation hardness or the elastic modulus are observed, while the analysis of the resulting wettability and surface tension as well as indirect and direct in vitro evaluation do not point towards cytotoxicity. Most importantly, Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-reinforced PMCs substantially reduce friction and wear by up to 19% and 44%, respectively, which was attributed to the formation of an easy-to-shear transfer film.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury. 用于评估创伤性脑损伤反应的三维神经血管单元组织模型
Journal of biomedical materials research. Part A Pub Date : 2024-10-23 DOI: 10.1002/jbm.a.37816
Liam Power, Rita Shuhmaher, Philip Houtz, Jinpeng Chen, Sara Rudolph, John Yuen, Majd Machour, Emily Levy, Limin Wu, Shulamit Levenberg, Michael Whalen, Ying Chen, David L Kaplan
{"title":"3D Neurovascular Unit Tissue Model to Assess Responses to Traumatic Brain Injury.","authors":"Liam Power, Rita Shuhmaher, Philip Houtz, Jinpeng Chen, Sara Rudolph, John Yuen, Majd Machour, Emily Levy, Limin Wu, Shulamit Levenberg, Michael Whalen, Ying Chen, David L Kaplan","doi":"10.1002/jbm.a.37816","DOIUrl":"https://doi.org/10.1002/jbm.a.37816","url":null,"abstract":"<p><p>The neurovascular unit (NVU) is a critical interface in the central nervous system that links vascular interactions with glial and neural tissue. Disruption of the NVU has been linked to the onset and progression of neurodegenerative diseases. Despite its significance the NVU remains challenging to study in a physiologically relevant manner. Here, a 3D cell triculture model of the NVU is developed that incorporates human primary brain microvascular endothelial cells, astrocytes, and pericytes into a tissue system that can be sustained in vitro for several weeks. This tissue model helps recapitulate the complexity of the NVU and can be used to interrogate the mechanisms of disease and cell-cell interactions. The NVU tissue model displays elevated cell death and inflammatory responses following mechanical damage, to emulate traumatic brain injury (TBI) under controlled laboratory conditions, including lactate dehydrogenase (LDH) release, elevated inflammatory markers TNF-α and monocyte chemoattractant cytokines MCP-2 and MCP-3 and reduced expression of the tight junction marker ZO-1. This 3D tissue model serves as a tool for deciphering mechanisms of TBIs and immune responses associated with the NVU.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142515325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viscoelastic Hydrogel Modulates Phenotype of Macrophage-Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. 粘弹性水凝胶可调节异物反应中巨噬细胞衍生多核细胞的表型和巨噬细胞的分化。
Journal of biomedical materials research. Part A Pub Date : 2024-10-21 DOI: 10.1002/jbm.a.37814
Josephine Y Fang, Zhi Yang, Wei Hu, Ba Xuan Hoang, Bo Han
{"title":"Viscoelastic Hydrogel Modulates Phenotype of Macrophage-Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions.","authors":"Josephine Y Fang, Zhi Yang, Wei Hu, Ba Xuan Hoang, Bo Han","doi":"10.1002/jbm.a.37814","DOIUrl":"https://doi.org/10.1002/jbm.a.37814","url":null,"abstract":"<p><p>Biomaterial-induced macrophage-derived multinucleated cells (MNCs) are often observed at or near material implantation sites, yet their subtypes and roles in tissue repair and wound healing remain unclear. This study compares material-induced MNCs to cytokine-induced MNCs using both in vitro and in vivo models. 3D-embedded Raw264.7 cells and rat bone marrow-derived monocytes (BMDMs), with or without cytokines such as IL-4 and RANKL, were characterized for their MNC morphologies and subtypes via in situ immunocytochemistry and flow cytometry. Macrophage polarization and osteoclastic differentiation were assessed through NO production, arginase activity, and tartrate-resistant acid phosphatase levels. 3D matrix-induced MNCs expressed the same phenotypic heterogeneity as the IL-4 and RANK-treated ones. 3D matrix-induced MNCs displayed the same phenotypic heterogeneity as those treated with IL-4 and RANKL. A high viscoelastic matrix (1006.48 ± 92.29 Pa) induced larger populations of proinflammatory and osteoclast-like MNCs, whereas a low viscoelastic matrix (38.61 ± 7.56 Pa) supported active differentiation and gene expression across pro-, anti-inflammatory, and osteoclast-like macrophages. Matrix viscoelasticity also influenced the effects of IL-4 and RANKL on macrophage-derived MNC polarization. In an in vivo subcutaneous implantation model, medium to high viscoelastic matrices exhibited higher populations of CD86+ and RANK+ MNCs, while low viscoelastic matrices showed higher populations of CD206+ MNCs. These findings suggest that matrix viscoelasticity modulates macrophage differentiation and MNC phenotype, with low viscoelastic matrices potentially favoring anti-inflammatory MNCs and macrophage differentiation suitable for subcutaneous implantation.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyethylene Glycol-Based Hydrogel as a 3D Extracellular Matrix Mimic for Cytotoxic T Lymphocytes. 聚乙二醇水凝胶作为细胞毒性 T 淋巴细胞的三维细胞外基质模拟物
Journal of biomedical materials research. Part A Pub Date : 2024-10-21 DOI: 10.1002/jbm.a.37811
M A Kristine Tolentino, Mir Hadi Seyedzadeh, Newton Gil Peres, Eric Yiwei Du, Lin Zhu, Katharina Gaus, Jesse Goyette, J Justin Gooding
{"title":"Polyethylene Glycol-Based Hydrogel as a 3D Extracellular Matrix Mimic for Cytotoxic T Lymphocytes.","authors":"M A Kristine Tolentino, Mir Hadi Seyedzadeh, Newton Gil Peres, Eric Yiwei Du, Lin Zhu, Katharina Gaus, Jesse Goyette, J Justin Gooding","doi":"10.1002/jbm.a.37811","DOIUrl":"https://doi.org/10.1002/jbm.a.37811","url":null,"abstract":"<p><p>Three-dimensional (3D) in vitro models enable us to understand cell behavior that is a better reflection of what occurs in vivo than 2D in vitro models. As a result, developing 3D models for extracellular matrix (ECM) has been growing exponentially. Most of the efforts for these 3D models are geared toward understanding cancer cells. An intricate network of cells that engages with cancer cells and can kill them are the immune cells, particularly cytotoxic T lymphocytes (CTLs). However, limited reports are available for 3D ECM mimics to understand CTL dynamics. Currently, we lack ECM mimetic hydrogels for immune cells, with sufficient control over variables, such as stiffness, to fully understand CTL dynamics in vitro. Here, we developed PEG-based hydrogels as ECM mimics for CTLs. The ECM mimics are targeted to mimic the stiffness of soft tissues where CTLs reside, migrate, and deliver their function. To understand cell-material interaction, we determined the porosity, biocompatibility, and stiffness of the ECM mimics. The ECM mimics have median pore sizes of 10.7 and 13.3 μm, close to the average nucleus size of CTLs (~8.6 μm), and good biocompatibility to facilitate cell migration. The stiffness of the ECM mimics corresponds to biologically relevant microenvironments such as lungs and kidneys. Using time-lapse fluorescence microscopy, 3D cell migration was imaged and measured. CTLs migrated faster in softer ECM mimic with larger pores, consistent with previous studies in collagen (the gold standard ECM mimic for CTLs). The work herein demonstrates that the PEG-based ECM mimic can serve as an in vitro tool to elucidate the cell dynamics of CTLs. Thus, this study opens possibilities to study the mechanics of CTLs in well-defined ECM mimic conditions in vitro.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles. 在聚乳酸(PLGA)/脂质混合纳米颗粒表面共轭多种蛋白质
Journal of biomedical materials research. Part A Pub Date : 2024-10-17 DOI: 10.1002/jbm.a.37807
He Hu, Chenming Zhang
{"title":"Conjugation of Multiple Proteins Onto the Surface of PLGA/Lipid Hybrid Nanoparticles.","authors":"He Hu, Chenming Zhang","doi":"10.1002/jbm.a.37807","DOIUrl":"https://doi.org/10.1002/jbm.a.37807","url":null,"abstract":"<p><p>Nanoparticles are increasingly being used in the development of vaccines for disease prevention or treatment. Recent research has demonstrated that conjugating a protein onto the surface of nanoparticles can significantly increase its immunogenicity. Considering various pathogens that threaten human health, multivalent vaccines are often desirable. Up to now, nanoparticle-based vaccines are mostly limited to one protein per nanoparticle. No research has been conducted to explore the possibility of conjugating more than one protein onto the surface of a nanoparticle. Here we developed a specific conjugation strategy to conjugate multiple proteins to the PLGA/lipid hybrid nanoparticle surface. The maleimide-thiol Michael addition, Aizde-DBCO (Dibenzocyclooctyne), and TCO (trans-cycloctene)-Tetrazine click chemistry were employed to conjugate three different proteins, subunit keyhole limpet hemocyanin (sKLH), Ovalbumin (OVA), and cross-reactive material 197 (CRM<sub>197</sub>), to the surface of PLGA/lipid hybrid nanoparticles (hNPs). The successful results of this study pave the way for developing multivalent vaccines against different pathogens.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142484153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信