The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth
{"title":"The Potential of Aloe Vera in Solution and in Blended Nanofibers Containing Poly (3-Hydroxybutyrate-Co-3-Hydroxyvalerate) as Substrates for Neurite Outgrowth","authors":"María-del-Mar Romero-Alemán, José-Manuel Pérez-Galván, José-Enrique Hernández-Rodríguez, Maximina Monzón-Mayor","doi":"10.1002/jbm.a.37825","DOIUrl":null,"url":null,"abstract":"<p>This pilot study investigated the potential of aloe vera (AV) to promote neurite outgrowth in organotypic dorsal root ganglia (DRG) explants (<i>n</i> = 230) from neonatal rats (<i>n</i> = 15). Using this in vitro model of acute axotomy, we assessed neurite outgrowth exceeding 1.5 times the explant diameter (viable explants) and measured the longest neurite length. These parameters were evaluated under control conditions and in cultures supplemented with commercial AV and four aligned scaffolds: poly-L-lactate (PLLA), polydioxanone (PDS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and blended PHBV/AV. After 6 days of culture, explants were immunostained using neuron-specific marker Tuj1 and Schwann cell marker S100. Measurements were obtained with Image J software and analyzed using Jamovi 2.3. In control and AV dilution media, the study revealed radial tissue growth from the explant body with randomly oriented neurites, whereas in all scaffolds, bidirectional tissue growth occurred parallel to nanofibers. Binomial logistic regression analyses indicated that viable explants were more likely in the control group compared to PDS (<i>p</i> = 0.0042) and PHBV (<i>p</i> < 0.0001), with non-significant differences when compared to AV dilution, PLLA, and PHBV/AV. AV dilution showed a greater association with viable explants than PLLA (<i>p</i> = 0.0459), while non-significant difference was found between AV dilution and PHBV/AV. Additionally, the PHBV/AV scaffold predicted higher odds of viable explants than PLLA (<i>p</i> = 0.0479), PDS (<i>p</i> = 0.0001), and PHBV (<i>p</i> < 0.0001). Groups with similar probabilities of obtaining viable explants (control, AV dilution, and PHBV/AV) exhibited non-significant differences in their longest neurite lengths. In conclusion, control, AV dilution, and PHBV/AV yielded the highest probability of developing viable explants and the longest neurite lengths. This is the first study demonstrating the direct permissiveness of AV for axonal outgrowth. Furthermore, the blended PHBV/AV scaffold showed significant potential as a suitable scaffold for axonal regrowth and Schwann cell migration, ensuring controlled tissue formation for tissue engineering applications.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37825","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37825","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This pilot study investigated the potential of aloe vera (AV) to promote neurite outgrowth in organotypic dorsal root ganglia (DRG) explants (n = 230) from neonatal rats (n = 15). Using this in vitro model of acute axotomy, we assessed neurite outgrowth exceeding 1.5 times the explant diameter (viable explants) and measured the longest neurite length. These parameters were evaluated under control conditions and in cultures supplemented with commercial AV and four aligned scaffolds: poly-L-lactate (PLLA), polydioxanone (PDS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and blended PHBV/AV. After 6 days of culture, explants were immunostained using neuron-specific marker Tuj1 and Schwann cell marker S100. Measurements were obtained with Image J software and analyzed using Jamovi 2.3. In control and AV dilution media, the study revealed radial tissue growth from the explant body with randomly oriented neurites, whereas in all scaffolds, bidirectional tissue growth occurred parallel to nanofibers. Binomial logistic regression analyses indicated that viable explants were more likely in the control group compared to PDS (p = 0.0042) and PHBV (p < 0.0001), with non-significant differences when compared to AV dilution, PLLA, and PHBV/AV. AV dilution showed a greater association with viable explants than PLLA (p = 0.0459), while non-significant difference was found between AV dilution and PHBV/AV. Additionally, the PHBV/AV scaffold predicted higher odds of viable explants than PLLA (p = 0.0479), PDS (p = 0.0001), and PHBV (p < 0.0001). Groups with similar probabilities of obtaining viable explants (control, AV dilution, and PHBV/AV) exhibited non-significant differences in their longest neurite lengths. In conclusion, control, AV dilution, and PHBV/AV yielded the highest probability of developing viable explants and the longest neurite lengths. This is the first study demonstrating the direct permissiveness of AV for axonal outgrowth. Furthermore, the blended PHBV/AV scaffold showed significant potential as a suitable scaffold for axonal regrowth and Schwann cell migration, ensuring controlled tissue formation for tissue engineering applications.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.