Journal of biomedical materials research. Part A最新文献

筛选
英文 中文
How well do 3D-printed tissue mimics represent the complex mechanics of biological soft tissues? An example study with Stratasys' cardiovascular TissueMatrix materials. 三维打印的组织模拟材料能多好地表现生物软组织的复杂力学?以 Stratasys 的心血管 TissueMatrix 材料为例进行研究。
Journal of biomedical materials research. Part A Pub Date : 2024-08-29 DOI: 10.1002/jbm.a.37787
Grace N Bechtel, Colton J Kostelnik, Manuel K Rausch
{"title":"How well do 3D-printed tissue mimics represent the complex mechanics of biological soft tissues? An example study with Stratasys' cardiovascular TissueMatrix materials.","authors":"Grace N Bechtel, Colton J Kostelnik, Manuel K Rausch","doi":"10.1002/jbm.a.37787","DOIUrl":"https://doi.org/10.1002/jbm.a.37787","url":null,"abstract":"<p><p>Tissue mimicking materials are designed to represent real tissue in applications such as medical device testing and surgical training. Thanks to progress in 3D-printing technology, tissue mimics can now be easily cast into arbitrary geometries and manufactured with adjustable material properties to mimic a wide variety of tissue types. However, it is unclear how well 3D-printable mimics represent real tissues and their mechanics. The objective of this work is to fill this knowledge gap using the Stratasys Digital Anatomy 3D-Printer as an example. To this end, we created mimics of biological tissues we previously tested in our laboratory: blood clots, myocardium, and tricuspid valve leaflets. We printed each tissue mimic to have the identical geometry to its biological counterpart and tested the samples using identical protocols. In our evaluation, we focused on the stiffness of the tissues and their fracture toughness in the case of blood clots. We found that the mechanical behavior of the tissue mimics often differed substantially from the biological tissues they aim to represent. Qualitatively, tissue mimics failed to replicate the traditional strain-stiffening behavior of soft tissues. Quantitatively, tissue mimics were stiffer than their biological counterparts, especially at small strains, in some cases by orders of magnitude. In those materials in which we tested toughness, we found that tissue mimicking materials were also much tougher than their biological counterparts. Thus, our work highlights limitations of at least one 3D-printing technology in its ability to mimic the mechanical properties of biological tissues. Therefore, care should be taken when using this technology, especially where tissue mimicking materials are expected to represent soft tissue properties quantitatively. Whether other technologies fare better remains to be seen.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zein: Potential biopolymer in inflammatory bowel diseases. Zein:炎症性肠病的潜在生物聚合物。
Journal of biomedical materials research. Part A Pub Date : 2024-08-29 DOI: 10.1002/jbm.a.37785
Nimeet Desai, Smit Nayi, Dignesh Khunt, Devesh U Kapoor, Sagar Salave, Bhupendra Prajapati, Chintan Vora, Rishabha Malviya, Rahul Maheshwari, Ravi Patel
{"title":"Zein: Potential biopolymer in inflammatory bowel diseases.","authors":"Nimeet Desai, Smit Nayi, Dignesh Khunt, Devesh U Kapoor, Sagar Salave, Bhupendra Prajapati, Chintan Vora, Rishabha Malviya, Rahul Maheshwari, Ravi Patel","doi":"10.1002/jbm.a.37785","DOIUrl":"https://doi.org/10.1002/jbm.a.37785","url":null,"abstract":"<p><p>Effectively managing inflammatory bowel disease (IBD) poses difficulties due to its persistent nature and unpredictable episodes of exacerbation. There is encouraging evidence that personalized medication delivery systems can improve therapy efficacy while reducing the negative effects of standard medicines. Zein, a protein produced from corn, has garnered interest as a possible means of delivering drugs for the treatment of IBD. This review delves into Zein-based drug delivery systems, showcasing its biodegradability, controlled release capabilities, and biocompatibility. Studies have shown that Zein-based nanoparticles, microcarriers, and core-shell microparticles have the capacity to increase medication stability, enhance targeting in the intestines, and decrease toxicity in animal models of IBD. The review highlights the promise of Zein in personalized therapy for IBD and urges more study to enhance its clinical use.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional hydrogels for the healing of oral ulcers. 用于口腔溃疡愈合的多功能水凝胶。
Journal of biomedical materials research. Part A Pub Date : 2024-08-29 DOI: 10.1002/jbm.a.37776
Wenjie Zhang, Jie Zhao, Xinxin Zou, Jingrong Yu, Jinlong Liao, Fengjie Huang
{"title":"Multifunctional hydrogels for the healing of oral ulcers.","authors":"Wenjie Zhang, Jie Zhao, Xinxin Zou, Jingrong Yu, Jinlong Liao, Fengjie Huang","doi":"10.1002/jbm.a.37776","DOIUrl":"https://doi.org/10.1002/jbm.a.37776","url":null,"abstract":"<p><p>Oral ulcers are one of the most common oral diseases in clinical practice. Its etiology is complex and varied. Due to the dynamic nature of the oral environment, the wound surface is painful due to contact and wear, which seriously affects the quality of life of patients. Oral ulcers are often treated with topical drug therapy. Studies have shown that functional hydrogels play a positive role in promoting wound healing, showing unique advantages in wound dressings. In this paper, the causes and healing characteristics of oral ulcers are discussed in depth, and then the common treatment methods for oral ulcers are summarized and compared. Finally, the potential of functional hydrogels in the treatment of oral ulcers is discussed and projected through a review of the literature in recent years.</p>","PeriodicalId":94066,"journal":{"name":"Journal of biomedical materials research. Part A","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信