JACS AuPub Date : 2024-10-28DOI: 10.1021/jacsau.4c0095610.1021/jacsau.4c00956
Christopher W. Jones*,
{"title":"Announcing the Winner of the 2024 JACS Au Outstanding Paper Award","authors":"Christopher W. Jones*, ","doi":"10.1021/jacsau.4c0095610.1021/jacsau.4c00956","DOIUrl":"https://doi.org/10.1021/jacsau.4c00956https://doi.org/10.1021/jacsau.4c00956","url":null,"abstract":"","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00956","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142550287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-28DOI: 10.1021/jacsau.4c00956
Christopher W Jones
{"title":"Announcing the Winner of the 2024 <i>JACS Au</i> Outstanding Paper Award.","authors":"Christopher W Jones","doi":"10.1021/jacsau.4c00956","DOIUrl":"10.1021/jacsau.4c00956","url":null,"abstract":"","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522926/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-07DOI: 10.1021/jacsau.4c0060310.1021/jacsau.4c00603
Allen Alonso Haysom-Rodríguez, and , Steven Bloom*,
{"title":"Poly-Dha Sequences as Pro-polypeptides: An Original Mechanistic Postulate Leads to the Discovery of a Long-Acting Vasodilator KU04212","authors":"Allen Alonso Haysom-Rodríguez, and , Steven Bloom*, ","doi":"10.1021/jacsau.4c0060310.1021/jacsau.4c00603","DOIUrl":"https://doi.org/10.1021/jacsau.4c00603https://doi.org/10.1021/jacsau.4c00603","url":null,"abstract":"<p >The construction of polypeptides was revolutionized by Merrifield’s solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a <i>first-in-class</i> polyazole peptide, was found to reduce vascular length density (−17%; <i>p</i> < 0.05) and increase vessel diameter (124%; <i>p</i> < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl<sub>2</sub> after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects <i>in vivo</i>, making it an enticing lead for the treatment of ischemic disorders.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00603","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142550429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-07eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00674
Juliana Calit, Surendra K Prajapati, Ernest D Benavente, Jessica E Araújo, Bingbing Deng, Kazutoyo Miura, Yasmin Annunciato, Igor M R Moura, Miho Usui, Jansen F Medeiros, Carolina H Andrade, Sabrina Silva-Mendonça, Anton Simeonov, Richard T Eastman, Carole A Long, Maisa da Silva Araujo, Kim C Williamson, Anna Caroline C Aguiar, Daniel Y Bargieri
{"title":"Pyrimidine Azepine Targets the <i>Plasmodium bc</i> <sub>1</sub> Complex and Displays Multistage Antimalarial Activity.","authors":"Juliana Calit, Surendra K Prajapati, Ernest D Benavente, Jessica E Araújo, Bingbing Deng, Kazutoyo Miura, Yasmin Annunciato, Igor M R Moura, Miho Usui, Jansen F Medeiros, Carolina H Andrade, Sabrina Silva-Mendonça, Anton Simeonov, Richard T Eastman, Carole A Long, Maisa da Silva Araujo, Kim C Williamson, Anna Caroline C Aguiar, Daniel Y Bargieri","doi":"10.1021/jacsau.4c00674","DOIUrl":"10.1021/jacsau.4c00674","url":null,"abstract":"<p><p>Malaria control and elimination efforts would benefit from the identification and validation of new malaria chemotherapeutics. Recently, a transgenic <i>Plasmodium berghei</i> line was used to perform a series of high-throughput in vitro screens for new antimalarials acting against the parasite sexual stages. The screens identified pyrimidine azepine chemotypes with potent activity. Here, we validate the activity of <b>PyAz90</b>, the most potent pyrimidine azepine chemotype identified, against <i>P. falciparum</i> and <i>P. vivax</i> in the asexual and sexual stages. <b>PyAz90</b> blocked parasite transmission to the mosquito vector at nanomolar concentrations and inhibited in vitro asexual parasite multiplication with a fast-action profile. Through the generation of <i>P. falciparum</i> <b>PyAz90-</b>resistant parasites and in vitro assays of mitochondrial activity, we identified cytochrome <i>b</i> as a molecular target of <b>PyAz90</b>. This work characterizes a promising chemotype that can be explored for the future development of new antimalarials targeting the <i>Plasmodium</i> cytochrome <i>bc</i> <sub>1</sub> complex.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds","authors":"Kazuki Tomota, Jialun Li, Hideya Tanaka, Masaaki Nakamoto, Takumi Tsushima and Hiroto Yoshida*, ","doi":"10.1021/jacsau.4c0066510.1021/jacsau.4c00665","DOIUrl":"https://doi.org/10.1021/jacsau.4c00665https://doi.org/10.1021/jacsau.4c00665","url":null,"abstract":"<p >The indispensability of a base in Suzuki–Miyaura coupling (SMC) employing organoboronic acids/esters is well recognized, which occasionally induces competitive protodeborylation in organoboron reagents. This phenomenon is particularly pronounced in fluorine-substituted aryl and heteroaryl boron compounds. Here, we show that direct SMC of naphthalene-1,8-diaminato (dan)-substituted aryl boron compounds, Ar–B(dan), characterized by its remarkable stability toward protodeborylation due to their diminished boron-Lewis acidity, occurs utilizing a weak base in conjunction with a palladium/copper cooperative catalyst system. The approach delineated in this study enables the efficient incorporation of various perfluoroaryl– and heteroaryl–B(dan) reagents, while maintaining high functional group tolerance. Furthermore, the inherent inertness of the B(dan) moiety allowed sequential cross-coupling, where other metallic moieties chemoselectively undergo the reaction, thus leading to the concise, protection-free synthesis of oligoarenes. Our results provide a potent approach to a delicate dilemma between a protodeborylation-resistant property and SMC activity intimately linked to boron-Lewis acidity.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00665","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-07DOI: 10.1021/jacsau.4c0067410.1021/jacsau.4c00674
Juliana Calit, Surendra K. Prajapati, Ernest D. Benavente, Jessica E. Araújo, Bingbing Deng, Kazutoyo Miura, Yasmin Annunciato, Igor M. R. Moura, Miho Usui, Jansen F. Medeiros, Carolina H. Andrade, Sabrina Silva-Mendonça, Anton Simeonov, Richard T. Eastman, Carole A. Long, Maisa da Silva Araujo, Kim C. Williamson, Anna Caroline C. Aguiar* and Daniel Y. Bargieri*,
{"title":"Pyrimidine Azepine Targets the Plasmodium bc1 Complex and Displays Multistage Antimalarial Activity","authors":"Juliana Calit, Surendra K. Prajapati, Ernest D. Benavente, Jessica E. Araújo, Bingbing Deng, Kazutoyo Miura, Yasmin Annunciato, Igor M. R. Moura, Miho Usui, Jansen F. Medeiros, Carolina H. Andrade, Sabrina Silva-Mendonça, Anton Simeonov, Richard T. Eastman, Carole A. Long, Maisa da Silva Araujo, Kim C. Williamson, Anna Caroline C. Aguiar* and Daniel Y. Bargieri*, ","doi":"10.1021/jacsau.4c0067410.1021/jacsau.4c00674","DOIUrl":"https://doi.org/10.1021/jacsau.4c00674https://doi.org/10.1021/jacsau.4c00674","url":null,"abstract":"<p >Malaria control and elimination efforts would benefit from the identification and validation of new malaria chemotherapeutics. Recently, a transgenic <i>Plasmodium berghei</i> line was used to perform a series of high-throughput in vitro screens for new antimalarials acting against the parasite sexual stages. The screens identified pyrimidine azepine chemotypes with potent activity. Here, we validate the activity of <b>PyAz90</b>, the most potent pyrimidine azepine chemotype identified, against <i>P. falciparum</i> and <i>P. vivax</i> in the asexual and sexual stages. <b>PyAz90</b> blocked parasite transmission to the mosquito vector at nanomolar concentrations and inhibited in vitro asexual parasite multiplication with a fast-action profile. Through the generation of <i>P. falciparum</i> <b>PyAz90-</b>resistant parasites and in vitro assays of mitochondrial activity, we identified cytochrome <i>b</i> as a molecular target of <b>PyAz90</b>. This work characterizes a promising chemotype that can be explored for the future development of new antimalarials targeting the <i>Plasmodium</i> cytochrome <i>bc</i><sub>1</sub> complex.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142517200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-07eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00603
Allen Alonso Haysom-Rodríguez, Steven Bloom
{"title":"Poly-Dha Sequences as <i>Pro</i>-polypeptides: An Original Mechanistic Postulate Leads to the Discovery of a Long-Acting Vasodilator KU04212.","authors":"Allen Alonso Haysom-Rodríguez, Steven Bloom","doi":"10.1021/jacsau.4c00603","DOIUrl":"10.1021/jacsau.4c00603","url":null,"abstract":"<p><p>The construction of polypeptides was revolutionized by Merrifield's solid-phase synthesis more than half a century ago. Herein, we explore a completely different approach to making peptides. We test an original mechanistic postulate wherein a single peptide made entirely of dehydroalanine (Dha) residues can give rise to regio- and stereodefined peptides by iterative conjugate addition of one- or two-electron nucleophiles. Each nucleophile appends a unique amino acid side chain to the peptide backbone. We show that side chain addition is not random. Side chains are added in one of two ways, in an electrophilicity-gated fashion (most cases) or in a substrate-directed manner, depending on the first nucleophile used in the synthesis. One peptide made in this series, KU04212, a <i>first-in-class</i> polyazole peptide, was found to reduce vascular length density (-17%; <i>p</i> < 0.05) and increase vessel diameter (124%; <i>p</i> < 0.001) in healthy day 6 chick embryos at 24 h post-single dose. It also rescued 75% of the embryos administered a 32-fold lethal dose of ischemia-inducing CoCl<sub>2</sub> after 12 h and 12.5% of the embryos after 24 h. In comparison to three mechanistically distinct vasodilators, e.g., isosorbide mononitrate, amlodipine besylate, and prazosin, only KU04212 showed long-acting effects <i>in vivo</i>, making it an enticing lead for the treatment of ischemic disorders.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds.","authors":"Kazuki Tomota, Jialun Li, Hideya Tanaka, Masaaki Nakamoto, Takumi Tsushima, Hiroto Yoshida","doi":"10.1021/jacsau.4c00665","DOIUrl":"10.1021/jacsau.4c00665","url":null,"abstract":"<p><p>The indispensability of a base in Suzuki-Miyaura coupling (SMC) employing organoboronic acids/esters is well recognized, which occasionally induces competitive protodeborylation in organoboron reagents. This phenomenon is particularly pronounced in fluorine-substituted aryl and heteroaryl boron compounds. Here, we show that direct SMC of naphthalene-1,8-diaminato (dan)-substituted aryl boron compounds, Ar-B(dan), characterized by its remarkable stability toward protodeborylation due to their diminished boron-Lewis acidity, occurs utilizing a weak base in conjunction with a palladium/copper cooperative catalyst system. The approach delineated in this study enables the efficient incorporation of various perfluoroaryl- and heteroaryl-B(dan) reagents, while maintaining high functional group tolerance. Furthermore, the inherent inertness of the B(dan) moiety allowed sequential cross-coupling, where other metallic moieties chemoselectively undergo the reaction, thus leading to the concise, protection-free synthesis of oligoarenes. Our results provide a potent approach to a delicate dilemma between a protodeborylation-resistant property and SMC activity intimately linked to boron-Lewis acidity.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522924/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Self-Immobilizing Photosensitizer with Long-Term Retention for Hypoxia Imaging and Enhanced Photodynamic Therapy.","authors":"Zifan Zhu, Yun Feng, Qiufen Tian, Jiawen Li, Chencong Liu, Yuchi Cheng, Sanjun Zhang, Yijing Dang, Jing Gao, Yi Lai, Fan Zhang, Haijun Yu, Wen Zhang, Zhiai Xu","doi":"10.1021/jacsau.4c00787","DOIUrl":"10.1021/jacsau.4c00787","url":null,"abstract":"<p><p>The precise theranostic strategy of fluorescence imaging-guided photodynamic therapy (PDT) can effectively mitigate the adverse effect of photosensitizers in normal cells and tissues. However, low tumor enrichment and high diffusivity of photosensitizers significantly compromise the imaging accuracy and PDT effect. In this study, we have developed a nitroreductase (NTR)-activated and self-immobilizing photosensitizer CyNT-F, which showed enhanced enrichment in tumor tissues and facilitated precise and sustained imaging as well as PDT for hypoxia tumors. mPEG-<i>b</i>-PDPA nanomicelles encapsulating photosensitizers underwent dissociation and released CyNT-F in tumor cells. CyNT-F and NTR enzymatically reacted in situ to generate highly reactive quinone methide, subsequently covalently binding to adjacent proteins for fluorescence and PDT activation. CyNT-F exhibited longer intracellular retention (7 days) and effectively inhibited the tumor growth of solid hypoxia tumor. We believe the activatable and self-immobilizing strategy of PDT presents a novel methodology for minimizing the adverse effect and enabling spatiotemporally accurate ablation of diseased cells and tissues.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
JACS AuPub Date : 2024-10-03eCollection Date: 2024-10-28DOI: 10.1021/jacsau.4c00677
Pablo A Mercadal, Agustín González, Ana Beloqui, Liliana C Tomé, David Mecerreyes, Marcelo Calderón, Matias L Picchio
{"title":"Eutectogels: The Multifaceted Soft Ionic Materials of Tomorrow.","authors":"Pablo A Mercadal, Agustín González, Ana Beloqui, Liliana C Tomé, David Mecerreyes, Marcelo Calderón, Matias L Picchio","doi":"10.1021/jacsau.4c00677","DOIUrl":"10.1021/jacsau.4c00677","url":null,"abstract":"<p><p>Eutectogels, a rising category of soft materials, have recently garnered significant attention owing to their remarkable potential in various domains. This innovative class of materials consists of a eutectic solvent immobilized in a three-dimensional network structure. The use of eco-friendly and cost-effective eutectic solvents further emphasizes the appeal of these materials in multiple applications. Eutectogels exhibit key characteristics of most eutectic solvents, including environmental friendliness, facile preparation, low vapor pressure, and good ionic conductivity. Moreover, they can be tailored to display functionalities such as self-healing capability, adhesiveness, and antibacterial properties, which are facilitated by incorporating specific combinations of the eutectic mixture constituents. This perspective article delves into the current landscape and challenges associated with eutectogels, particularly focusing on their potential applications in CO<sub>2</sub> separation, drug delivery systems, battery technologies, biocatalysis, and food packaging. By exploring these diverse realms, we aim to shed light on the transformative capabilities of eutectogels and the opportunities they present to address pressing industrial, academic, and environmental challenges.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":null,"pages":null},"PeriodicalIF":8.5,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142559866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}