Unraveling the Catalytic Mechanism and Substrate Selectivity of HDAC10: A Dual-Filter Approach for Polyamine Deacetylation.

IF 8.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-09-08 eCollection Date: 2025-09-22 DOI:10.1021/jacsau.5c00842
Shengyang Cai, Jingwei Weng, Igor Ying Zhang, Yichun Zhu
{"title":"Unraveling the Catalytic Mechanism and Substrate Selectivity of HDAC10: A Dual-Filter Approach for Polyamine Deacetylation.","authors":"Shengyang Cai, Jingwei Weng, Igor Ying Zhang, Yichun Zhu","doi":"10.1021/jacsau.5c00842","DOIUrl":null,"url":null,"abstract":"<p><p>The histone deacetylase (HDAC) family plays a crucial role in regulating acetylation-dependent cellular processes, with dysregulation linked to diseases ranging from cancer to neurodegeneration. HDAC10, the sole polyamine deacetylase in the HDAC family, uniquely influences pathologies such as tumor immunity, autophagy, inflammation, virus infection, silicosis, <i>etc</i>. Despite its therapeutic potential, the molecular basis of HDAC10's catalytic activity and substrate selectivity remains poorly understood, hindering rational drug design. Here, we address this gap by integrating density functional theory (DFT) and molecular dynamics simulation to systematically investigate HDAC10's catalytic activity and substrate selectivity. Utilizing a 330-atom quantum cluster model, we evaluated five distinct reaction pathways. The double-proton transfer mechanism (D'D) is dominant, featuring a concerted double-proton transfer step and a rate-limiting protonation of the substrate's amide nitrogen (20.4 kcal/mol barrier). Substrate selectivity arises from synergistic effects: <i>N</i> <sup>8</sup>-acetylspermidine benefits from enhanced binding <i>via</i> active-site hydrogen-bond networks and reduced catalytic barriers compared to <i>N</i> <sup>1</sup>-acetylspermidine, which suffers from electrostatic repulsion and dynamic instability. This study provides the first atomic-resolution framework for HDAC10's catalysis and selectivity, resolving long-standing mechanistic ambiguities. By identifying critical interactions governing substrate recognition and turnover, our work establishes a foundation for designing isoform-specific HDAC10 inhibitors, offering strategic avenues to target its roles in disease.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 9","pages":"4491-4505"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458008/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The histone deacetylase (HDAC) family plays a crucial role in regulating acetylation-dependent cellular processes, with dysregulation linked to diseases ranging from cancer to neurodegeneration. HDAC10, the sole polyamine deacetylase in the HDAC family, uniquely influences pathologies such as tumor immunity, autophagy, inflammation, virus infection, silicosis, etc. Despite its therapeutic potential, the molecular basis of HDAC10's catalytic activity and substrate selectivity remains poorly understood, hindering rational drug design. Here, we address this gap by integrating density functional theory (DFT) and molecular dynamics simulation to systematically investigate HDAC10's catalytic activity and substrate selectivity. Utilizing a 330-atom quantum cluster model, we evaluated five distinct reaction pathways. The double-proton transfer mechanism (D'D) is dominant, featuring a concerted double-proton transfer step and a rate-limiting protonation of the substrate's amide nitrogen (20.4 kcal/mol barrier). Substrate selectivity arises from synergistic effects: N 8-acetylspermidine benefits from enhanced binding via active-site hydrogen-bond networks and reduced catalytic barriers compared to N 1-acetylspermidine, which suffers from electrostatic repulsion and dynamic instability. This study provides the first atomic-resolution framework for HDAC10's catalysis and selectivity, resolving long-standing mechanistic ambiguities. By identifying critical interactions governing substrate recognition and turnover, our work establishes a foundation for designing isoform-specific HDAC10 inhibitors, offering strategic avenues to target its roles in disease.

揭示HDAC10的催化机制和底物选择性:多胺脱乙酰的双过滤方法。
组蛋白去乙酰化酶(HDAC)家族在调节乙酰化依赖的细胞过程中起着至关重要的作用,其失调与从癌症到神经退行性疾病有关。HDAC10是HDAC家族中唯一的多胺去乙酰化酶,它独特地影响肿瘤免疫、自噬、炎症、病毒感染、矽肺等病理。尽管具有治疗潜力,但HDAC10的催化活性和底物选择性的分子基础仍然知之甚少,阻碍了合理的药物设计。在这里,我们通过整合密度泛函理论(DFT)和分子动力学模拟来解决这一空白,系统地研究了HDAC10的催化活性和底物选择性。利用330原子量子簇模型,我们评估了五种不同的反应途径。双质子转移机制(D - D)占主导地位,具有协调的双质子转移步骤和底物酰胺氮的限速质子化(20.4 kcal/mol势垒)。底物选择性源于协同效应:与受静电斥力和动态不稳定性影响的1-乙酰亚精胺相比,n8 -乙酰亚精胺得益于活性位点氢键网络的增强结合和催化屏障的降低。这项研究为HDAC10的催化和选择性提供了第一个原子分辨率框架,解决了长期存在的机制歧义。通过确定控制底物识别和转换的关键相互作用,我们的工作为设计亚型特异性HDAC10抑制剂奠定了基础,为靶向其在疾病中的作用提供了战略途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信