Generative Deep Learning Pipeline Yields Potent Gram-Negative Antibiotics.

IF 8.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-09-09 eCollection Date: 2025-09-22 DOI:10.1021/jacsau.5c00602
Martin F Köllen, Maximilian G Schuh, Robin Kretschmer, Joshua Hesse, Dominik Schum, Junhong Chen, Annkathrin I Bohne, Dominik P Halter, Stephan A Sieber
{"title":"Generative Deep Learning Pipeline Yields Potent Gram-Negative Antibiotics.","authors":"Martin F Köllen, Maximilian G Schuh, Robin Kretschmer, Joshua Hesse, Dominik Schum, Junhong Chen, Annkathrin I Bohne, Dominik P Halter, Stephan A Sieber","doi":"10.1021/jacsau.5c00602","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating crisis of multiresistant bacteria demands the rapid discovery of novel antibiotics that transcend the limitations imposed by the biased chemical space of current libraries. To address this challenge, we introduce an innovative deep learning-driven pipeline for <i>de novo</i> antibiotic design. Our unique approach leverages a chemical language model to generate structurally unprecedented antibiotic candidates. The model was trained on a diverse chemical space of drug-like molecules and natural products. We then applied transfer learning using a data set of diverse antibiotic scaffolds to refine its generative capabilities. Using predictive modeling and expert curation, we prioritized the most promising compounds for synthesis. This pipeline identified a lead candidate with potent activity against methicillin-resistant <i>Staphylococcus aureus</i>. We then performed iterative refinement by synthesizing 40 derivatives of the lead compound. This effort produced a suite of active compounds, with 30 showing activity against <i>S. aureus</i> and 17 against <i>Escherichia coli</i>. Among these, lead compound <b>D8</b> exhibited remarkable submicromolar and single-digit micromolar potency against the aforementioned pathogens, respectively. Mechanistic investigations point to the reductive generation of reactive species as its primary mode of action. This work validates a deep-learning pipeline that explores chemical space to generate antibiotic candidates. This process yields a potent nitrofuran derivative and a set of experimentally validated scaffolds to seed future antibiotic development.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 9","pages":"4249-4259"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458054/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating crisis of multiresistant bacteria demands the rapid discovery of novel antibiotics that transcend the limitations imposed by the biased chemical space of current libraries. To address this challenge, we introduce an innovative deep learning-driven pipeline for de novo antibiotic design. Our unique approach leverages a chemical language model to generate structurally unprecedented antibiotic candidates. The model was trained on a diverse chemical space of drug-like molecules and natural products. We then applied transfer learning using a data set of diverse antibiotic scaffolds to refine its generative capabilities. Using predictive modeling and expert curation, we prioritized the most promising compounds for synthesis. This pipeline identified a lead candidate with potent activity against methicillin-resistant Staphylococcus aureus. We then performed iterative refinement by synthesizing 40 derivatives of the lead compound. This effort produced a suite of active compounds, with 30 showing activity against S. aureus and 17 against Escherichia coli. Among these, lead compound D8 exhibited remarkable submicromolar and single-digit micromolar potency against the aforementioned pathogens, respectively. Mechanistic investigations point to the reductive generation of reactive species as its primary mode of action. This work validates a deep-learning pipeline that explores chemical space to generate antibiotic candidates. This process yields a potent nitrofuran derivative and a set of experimentally validated scaffolds to seed future antibiotic development.

生成式深度学习管道产生有效的革兰氏阴性抗生素。
多重耐药细菌的危机不断升级,要求迅速发现新的抗生素,超越目前图书馆中有偏见的化学空间所施加的限制。为了应对这一挑战,我们引入了一种创新的深度学习驱动的管道,用于从头设计抗生素。我们独特的方法利用化学语言模型来生成结构上前所未有的候选抗生素。该模型是在药物类分子和天然产物的不同化学空间上训练的。然后,我们使用不同抗生素支架的数据集应用迁移学习来改进其生成能力。使用预测建模和专家筛选,我们优先考虑最有希望的化合物进行合成。该管道确定了具有抗甲氧西林耐药金黄色葡萄球菌有效活性的主要候选药物。然后,我们通过合成40个先导化合物的衍生物进行迭代细化。这一努力产生了一套活性化合物,其中30种对金黄色葡萄球菌有活性,17种对大肠杆菌有活性。其中,先导化合物D8对上述病原菌分别表现出显著的亚微摩尔和个位数微摩尔效力。机械研究指出反应性物质的还原生成是其主要的作用方式。这项工作验证了一种探索化学空间以产生候选抗生素的深度学习管道。这一过程产生了一种有效的硝基呋喃衍生物和一套实验验证的支架,为未来的抗生素开发奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信