通过反应模拟研究铝和氧化铝界面的再结晶机理。

IF 8.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-09-10 eCollection Date: 2025-09-22 DOI:10.1021/jacsau.5c01074
Hao Zhao, Fernando Bresme
{"title":"通过反应模拟研究铝和氧化铝界面的再结晶机理。","authors":"Hao Zhao, Fernando Bresme","doi":"10.1021/jacsau.5c01074","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum and alumina are essential materials used in various energy processes and devices. In this study, we conduct an atomic-level investigation into the microscopic mechanisms that govern the recrystallization (crystal growth from its melt) of aluminum and aluminum oxide interfaces. We utilize a reactive force field (ReaxFF) along with bond-orientational order parameters and unsupervised clustering algorithms to clarify the barrierless nature of the ultrafast metallic growth processes of aluminum. Our analysis provides valuable insights into the microscopic mechanisms that facilitate the incorporation of atoms into alumina, which is a crucial step in the crystal growth of this metal oxide. For the crystal growth of alumina we identify a sequential process where oxygen atoms first occupy lattice sites before aluminum atoms are integrated. This mechanism involves energy barriers that may explain the slow crystal growth rates reported in the crystallization of aluminum oxide. Furthermore, we report a significant correlation between the incorporation of oxygen into the crystal structure and the modification of the atomic charge. These findings enhance our understanding of the distinct crystallization behaviors of metals and metal oxide interfaces, offering microscopic insights for developing materials with improved performance characteristics.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 9","pages":"4625-4635"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458036/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recrystallization Mechanisms of Aluminum and Aluminum Oxide Interfaces through Reactive Simulations.\",\"authors\":\"Hao Zhao, Fernando Bresme\",\"doi\":\"10.1021/jacsau.5c01074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aluminum and alumina are essential materials used in various energy processes and devices. In this study, we conduct an atomic-level investigation into the microscopic mechanisms that govern the recrystallization (crystal growth from its melt) of aluminum and aluminum oxide interfaces. We utilize a reactive force field (ReaxFF) along with bond-orientational order parameters and unsupervised clustering algorithms to clarify the barrierless nature of the ultrafast metallic growth processes of aluminum. Our analysis provides valuable insights into the microscopic mechanisms that facilitate the incorporation of atoms into alumina, which is a crucial step in the crystal growth of this metal oxide. For the crystal growth of alumina we identify a sequential process where oxygen atoms first occupy lattice sites before aluminum atoms are integrated. This mechanism involves energy barriers that may explain the slow crystal growth rates reported in the crystallization of aluminum oxide. Furthermore, we report a significant correlation between the incorporation of oxygen into the crystal structure and the modification of the atomic charge. These findings enhance our understanding of the distinct crystallization behaviors of metals and metal oxide interfaces, offering microscopic insights for developing materials with improved performance characteristics.</p>\",\"PeriodicalId\":94060,\"journal\":{\"name\":\"JACS Au\",\"volume\":\"5 9\",\"pages\":\"4625-4635\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458036/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JACS Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/jacsau.5c01074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/22 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c01074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铝和氧化铝是用于各种能源过程和设备的基本材料。在这项研究中,我们对铝和氧化铝界面再结晶(从熔体生长)的微观机制进行了原子水平的研究。我们利用反作用力场(ReaxFF)以及键取向有序参数和无监督聚类算法来阐明铝的超快金属生长过程的无障碍性质。我们的分析为促进原子与氧化铝结合的微观机制提供了有价值的见解,这是金属氧化物晶体生长的关键一步。对于氧化铝的晶体生长,我们确定了一个顺序的过程,其中氧原子首先占据晶格位点,然后铝原子被整合。这一机制涉及能量障碍,可以解释在氧化铝结晶中报道的缓慢晶体生长速率。此外,我们还报道了氧加入晶体结构与原子电荷的修饰之间的显著相关性。这些发现增强了我们对金属和金属氧化物界面的独特结晶行为的理解,为开发具有改进性能特征的材料提供了微观见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recrystallization Mechanisms of Aluminum and Aluminum Oxide Interfaces through Reactive Simulations.

Aluminum and alumina are essential materials used in various energy processes and devices. In this study, we conduct an atomic-level investigation into the microscopic mechanisms that govern the recrystallization (crystal growth from its melt) of aluminum and aluminum oxide interfaces. We utilize a reactive force field (ReaxFF) along with bond-orientational order parameters and unsupervised clustering algorithms to clarify the barrierless nature of the ultrafast metallic growth processes of aluminum. Our analysis provides valuable insights into the microscopic mechanisms that facilitate the incorporation of atoms into alumina, which is a crucial step in the crystal growth of this metal oxide. For the crystal growth of alumina we identify a sequential process where oxygen atoms first occupy lattice sites before aluminum atoms are integrated. This mechanism involves energy barriers that may explain the slow crystal growth rates reported in the crystallization of aluminum oxide. Furthermore, we report a significant correlation between the incorporation of oxygen into the crystal structure and the modification of the atomic charge. These findings enhance our understanding of the distinct crystallization behaviors of metals and metal oxide interfaces, offering microscopic insights for developing materials with improved performance characteristics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信