{"title":"Unraveling the protective mechanisms of Chuanfangyihao against acute lung injury: Insights from experimental validation.","authors":"Hongfang Fu, Xiao Liang, Wanying Tan, Xiaoyu Hu","doi":"10.3892/etm.2023.12234","DOIUrl":"10.3892/etm.2023.12234","url":null,"abstract":"<p><p>Chuanfangyihao (CFYH) is an effective treatment for acute lung injury (ALI) in clinical practice; however, its underlying mechanism of action remains unclear. Therefore, the aim of the present study was to elucidate the pharmacological mechanism of action of CFYH in ALI through experimental validation. First, a rat model of ALI was established using lipopolysaccharide (LPS). Next, the pathological changes in the lungs of the rats and the pathological damage were scored. The wet/dry weight ratios were measured, and ROS content was detected using flow cytometry. ELISA was used to examine IL-6, TNF-α, IL-1β, IL-18, and LDH levels. Immunohistochemistry was used to detect Beclin-1 and NLRP3 expression. Western blotting was performed to analyze the expression of HMGB1, RAGE, TLR4, NF-κB p65, AMPK, p-AMPK, mTOR, p-mTOR, Beclin-1, LC3-II/I, p62, Bcl-2, Bax, Caspase-3, Caspase-1, and GSDMD-NT. The mRNA levels of HMGB1, RAGE, AMPK, mTOR, and HIF-1α were determined using reverse transcription quantitative PCR. CFYH alleviated pulmonary edema and decreased the expression of IL-6, TNF-α, TLR4, NF-κB p65, HMGB1/RAGE, ROS, and HIF-1α. In addition, pretreatment with CFYH reversed ALI-induced programmed cell death. In conclusion, CFYH alleviates LPS-induced ALI, and these findings provide a preliminary clarification of the predominant mechanism of action of CFYH in ALI.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"535"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/df/6e/etm-26-05-12234.PMC10587870.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transcriptomics and metabolomics study in mouse kidney of the molecular mechanism underlying energy metabolism response to hypoxic stress in highland areas.","authors":"Yujie Gao, Qifu Long, Hui Yang, Ying Hu, Yuzhen Xu, Chaoqun Tang, Cunlin Gu, Sheng Yong","doi":"10.3892/etm.2023.12232","DOIUrl":"10.3892/etm.2023.12232","url":null,"abstract":"<p><p>Exposure to hypoxia disrupts energy metabolism and induces inflammation. However, the pathways and mechanisms underlying energy metabolism disorders caused by hypoxic conditions remain unclear. In the present study, a hypoxic animal model was created and transcriptomic and non-targeted metabolomics techniques were applied to further investigate the pathways and mechanisms of hypoxia exposure that disrupt energy metabolism. Transcriptome results showed that 3,007 genes were significantly differentially expressed under hypoxic exposure, and Gene Ontology annotation analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes (DEGs) were mainly involved in energy metabolism and were significantly enriched in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathway. The DEGs <i>IDH3A</i>, <i>SUCLA2</i>, and <i>MDH2</i> in the TCA cycle and the DEGs <i>NDUFA3</i>, <i>NDUFS7</i>, <i>UQCRC1</i>, <i>CYC1</i> and <i>UQCRFS1</i> in the OXPHOS pathway were validated using mRNA and protein expression, and the results showed downregulation. The results of non-targeted metabolomics showed that 365 significant differential metabolites were identified under plateau hypoxia stress. KEGG enrichment analysis showed that the differential metabolites were mainly enriched in metabolic processes, such as energy, nucleotide and amino acid metabolism. Hypoxia exposure disrupted the TCA cycle and reduced the synthesis of amino acids and nucleotides by decreasing the concentration of cis-aconitate, α-ketoglutarate, NADH, NADPH and that of most amino acids, purines, and pyrimidines. Bioinformatics analysis was used to identify inflammatory genes related to hypoxia exposure and some of them were selected for verification. It was shown that the mRNA and protein expression levels of <i>IL1B</i>, <i>IL12B</i>, <i>S100A8</i> and <i>S100A9</i> in kidney tissues were upregulated under hypoxic exposure. The results suggest that hypoxia exposure inhibits the TCA cycle and the OXPHOS signalling pathway by inhibiting <i>IDH3A</i>, <i>SUCLA2</i>, <i>MDH2</i>, <i>NDUFFA3</i>, <i>NDUFS7</i>, <i>UQCRC1</i>, <i>CYC1</i> and <i>UQCRFS1</i>, thereby suppressing energy metabolism, inducing amino acid and nucleotide deficiency and promoting inflammation, ultimately leading to kidney damage.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"533"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c3/6e/etm-26-05-12232.PMC10587886.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Integrin β5 is an independent prognostic marker for intrahepatic cholangiocarcinoma in a Chinese population.","authors":"Lixing Ma, Kang Song, Jinfeng Zang","doi":"10.3892/etm.2023.12231","DOIUrl":"10.3892/etm.2023.12231","url":null,"abstract":"<p><p>Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor and a major cause of cancer mortality worldwide. Integrin β5 (ITGB5) is considered to be involved in the intercellular signal transduction and regulation of tumorigenesis and development. The present study investigated the association between ITGB5 expression levels and the prognosis of ICC, as well as the effects of ITGB5 on the proliferation and invasion of ICC cells. RNA-sequencing transcriptomic profiling data of ICC samples were retrieved from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Tissue specimens from patients with ICC treated at Taizhou People's Hospital were collected and the ITGB5 expression levels were evaluated using immunohistochemical staining. The biological function of ITGB5 in ICC was investigated using Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA) and <i>in vitro</i> experiments using HuCCT1 cells. After knocking down ITGB5 expression, cell proliferation was detected using Cell Counting Kit-8 assay, while cell invasion was assessed using Transwell assays. According to TCGA dataset, ITGB5 was highly expressed in ICC; however, there was no significant difference in prognosis between patients with high and low ITGB5 expression levels. High expression of ITGB5 was present in the tissues of patients with ICC from the GEO database, which was associated with poor prognosis. Survival analyses of the clinical data obtained in the present study revealed that high expression levels of ITGB5 in patients with ICC were associated with a reduced overall survival. GO and GSEA indicated that genes associated with ITGB5 were enriched in the extracellular matrix-receptor interaction and focal adhesion signaling pathways. Silencing ITGB5 inhibited the proliferation and invasion of ICC cells. In conclusion, ITGB5 may act as an essential regulator of ICC development and progression by influencing the proliferation and invasion of ICC cells. However, future studies with larger sample sizes are required to validate the role of ITGB5 in the prognosis of patients with ICC.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"532"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/92/ca/etm-26-05-12231.PMC10587877.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FRZB affects <i>Staphylococcus</i> aureus‑induced osteomyelitis in human bone marrow derived stem cells by regulating the Wnt/β‑catenin signaling pathway.","authors":"Xin Li, Wenyong Pang, Hongsong Fan, Hao Wang, Leibing Zhang","doi":"10.3892/etm.2023.12230","DOIUrl":"10.3892/etm.2023.12230","url":null,"abstract":"<p><p>Osteomyelitis is an infectious disease of bone tissue caused by bacterial infection, which can infect through hematogenous, traumatic or secondary ways and then lead to acute or chronic bone injury and relative clinical symptoms, bringing physical injury and economic burden to patients. Frizzled related protein (FRZB) participates in the regulation of various diseases (osteoarthritis, cardiovascular diseases and types of cancer) by regulating cell proliferation, motility, differentiation and inflammation, while its function in osteomyelitis remains to be elucidated. The present study aimed to uncover the role and underlying mechanism of FRZB mediation in <i>Staphylococcus aureus</i> (<i>S. aureus</i>)-induced osteomyelitis. Human bone marrow derived stem cells (hBMSCs) were treated with <i>S. aureus</i> to imitate an inflammatory osteomyelitis micro-environment <i>in vitro</i>, then mRNA and protein expression were severally assessed by RT-PCR and western blotting. The activity, apoptosis and differentiation of the cells were characterized via CCK-8, caspase-3 activity and Alizarin red sulfate/alkaline phosphatase staining, respectively. Expression levels of FRZB were upregulated in <i>S</i>. <i>aureus</i>-infected hBMSCs. Over-expression of FRZB significantly reduced hBMSC cell viability and differentiation while promoting cell apoptosis with or without <i>S</i>. <i>aureus</i> infection. However, FRZB knockdown reversed these effects. Once Wnt was impeded, the effect of FRZB downregulation was impeded to a great extent. Taken together, FRZB participated to regulate the osteomyelitis by activating the Wnt/β-catenin signaling pathway.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"531"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/87/etm-26-05-12230.PMC10587868.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tie Hu, Wen-Peng Yu, Hua-Xi Zou, Zhi-Hao Chai, Shu-Yu Le, Fa-Jia Hu, Yi-Cheng Wang, Huang Huang, Song-Qing Lai, Ji-Chun Liu
{"title":"Role of dysregulated ferroptosis‑related genes in cardiomyocyte ischemia‑reperfusion injury: Experimental verification and bioinformatics analysis.","authors":"Tie Hu, Wen-Peng Yu, Hua-Xi Zou, Zhi-Hao Chai, Shu-Yu Le, Fa-Jia Hu, Yi-Cheng Wang, Huang Huang, Song-Qing Lai, Ji-Chun Liu","doi":"10.3892/etm.2023.12233","DOIUrl":"10.3892/etm.2023.12233","url":null,"abstract":"<p><p>Acute myocardial infarction is a life-threatening condition with high mortality and complication rates. Although myocardial reperfusion can preserve ischemic myocardial tissue, it frequently exacerbates tissue injury, a phenomenon known as ischemia-reperfusion injury (IRI). However, the underlying pathological mechanisms of IRI remain to be completely understood. Ferroptosis is a novel type of regulated cell death that is associated with various pathological conditions, including angiocardiopathy. The purpose of this article was to elucidate the possible mechanistic role of ferroptosis in IRI through bioinformatics analysis and experimental validation. Healthy and IRI heart samples were screened for differentially expressed ferroptosis-related genes and functional enrichment analysis was performed to determine the potential crosstalk and pathways involved. A protein-protein interaction network was established for IRI, and 10 hub genes that regulate ferroptosis, including <i>HIF1A</i>, <i>EGFR</i>, <i>HMOX1</i>, and <i>ATF3</i> were identified. <i>In</i> vitro, an anoxia/reoxygenation (A/R) injury model was established using H9c2 cardiomyoblasts to validate the bioinformatics analysis results, and extensive ferroptosis was detected. A total of 4 key hub genes and 3 key miRNAs were also validated. It was found that IRI was related to the aberrant infiltration of immune cells and the small-molecule drugs that may protect against IRI by preventing ferroptosis were identified. These results provide novel insights into the role of ferroptosis in IRI, which can help identify novel therapeutic targets.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"534"},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fb/81/etm-26-05-12233.PMC10587876.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metformin regulates the LIN28B‑mediated JNK/STAT3 signaling pathway through miR‑140‑3p in subretinal fibrosis.","authors":"Zhijuan Hua, Wenchang Yang, Dongli Li, Yixin Cui, Lu Shen, Lingna Rao, Yuxiang Zheng, Qiying Zhang, Wenyi Zeng, Yi Gong, Ling Yuan","doi":"10.3892/etm.2023.12227","DOIUrl":"10.3892/etm.2023.12227","url":null,"abstract":"<p><p>Subretinal fibrosis (SF) is an important cause of submacular neovascularization that leads to permanent vision loss, but has no effective clinical treatment. The present study examined the influence of metformin on SF, and investigated whether the mechanism involves the microRNA (miR)-140-3p/LIN28B/JNK/STAT3-mediated regulation of oxidative stress, angiogenesis and fibrosis-associated indicators. A mouse model of laser-induced SF was established. In addition, an ARPE-19 fibrotic cell model was established using TGF-β1. A Cell Counting Kit-8 assay was used to examine cell viability. Flow cytometry was used to measure reactive oxygen species levels, and western blotting was used to detect the levels of proteins associated with epithelial-mesenchymal transition (EMT), signaling and fibrosis. The levels of superoxide dismutase, malondialdehyde, glutathione-peroxidase and catalase were measured using kits. Scratch assays and Transwell assays were used to assess cell migration and invasion, respectively, and reverse transcription-quantitative PCR was used to determine the levels of miR-140-3p and LIN28B. Dual-luciferase assays were used to verify the targeting relationship between miR-140-3p and LIN28B, and coimmunoprecipitation was used to confirm the interaction between LIN28B and JNK. Masson staining and hematoxylin and eosin staining were used to examine collagenous fibers and the histopathology of eye tissue. In ARPE-19 cells induced by TGF-β1, metformin promoted miR-140-3p expression and inhibited LIN28B expression and JNK/STAT3 pathway activation, thereby inhibiting oxidative stress, EMT and fibrosis in ARPE-19 cells. The overexpression of LIN28B or treatment with the JNK/STAT3 agonist anisomycin partially reversed the inhibitory effect of metformin on oxidative stress and fibrosis in ARPE-19 cells. The dual-luciferase reporter assay and coimmunoprecipitation assay showed that miR-140-3p targeted the 3' untranslated region of LIN28B mRNA and inhibited LIN28B expression. LIN28B targeted and bound to JNK and regulated the JNK/STAT3 pathway. Therefore, it may be concluded that metformin can promote miR-140-3p expression, inhibit LIN28B and then inhibit the JNK/STAT3 pathway to alleviate SF.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"528"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/57/f9/etm-26-05-12227.PMC10587880.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Salsolinol improves angiotensin II‑induced myocardial fibrosis <i>in vitro</i> via inhibition of LSD1 through regulation of the STAT3/Notch‑1 signaling pathway.","authors":"Xian Zhang, Ze Shao, Yuchao Ni, Feilong Chen, Xia Yu, Jiasheng Wen","doi":"10.3892/etm.2023.12226","DOIUrl":"10.3892/etm.2023.12226","url":null,"abstract":"<p><p>The clinical incidence of congestive heart failure (CHF) is very high and it poses a significant threat to the health of patients. The traditional Chinese medicine monomer salsolinol is widely used to treat similar symptoms of CHF. However, there have been no reports on the effect of salsolinol for the management of CHF and its effects on myocardial fibrosis. In the present study, salsolinol was used to treat angiotensin II (AngII)-induced human cardiac fibroblasts (HCFs) and cell proliferation and migration were assessed using a CCK-8, EdU staining assay and wound healing assay. Subsequently, immunofluorescence, western blotting and other techniques were used to detect indicators associated with cell fibrosis and relevant kits were used to detect markers of cellular inflammation and reactive oxygen species (ROS) production. Molecular docking analysis was used to predict the relationship between salsolinol and lysine-specific histone demethylase 1A (LSD1). Subsequently, the expression of LSD1 in the serum of CHF patients was detected by reverse transcription-quantitative PCR. Finally, LSD1 was overexpressed in cells to explore the regulatory mechanism of salsolinol in AngII-induced HFCs. Salsolinol reduced the proliferation and migration. Salsolinol reduced the expression of fibrosis marker proteins α-smooth muscle actin, Collagen I and Collagen III in a concentration-dependent manner, thereby reducing cell fibrosis. In addition, salsolinol reduced the levels of TNF-α and IL-6 in the cell supernatant and ROS production following AngII induction. Salsolinol inhibited LSD1 expression and regulated the STAT3/Notch-1 signaling pathway. Upregulation of LSD1 reversed the effects of salsolinol on AngII-induced HCFs. Salsolinol inhibited LSD1 via regulation of the STAT3/Notch-1 signaling pathway to improve Ang II-induced myocardial fibrosis <i>in vitro</i>.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"527"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ae/e7/etm-26-05-12226.PMC10587875.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of net adverse clinical events between bivalirudin and heparin as anticoagulants for percutaneous coronary intervention in Chinese patients.","authors":"Lina Chai, Jinjun Liu, Yapei Zhang, Mengying Zhang, Zhenzhen Wang, Yiping Wu, Zhichao Bai, Zhenpeng Qin","doi":"10.3892/etm.2023.12229","DOIUrl":"10.3892/etm.2023.12229","url":null,"abstract":"<p><p>Bivalirudin, as a direct thrombin inhibitor, is considered to be safer compared with other anticoagulants, such as heparin; however, relevant data in China are unclear. The present study aimed to compare the safety of bivalirudin and heparin as anticoagulants in Chinese patients who underwent percutaneous coronary intervention (PCI). In the present study, 2,377 patients with ST-segment elevation myocardial infarction (STEMI), unstable angina, non-STEMI or stable coronary artery disease who underwent primary PCI while receiving bivalirudin or heparin (low molecular weight heparin or unfractionated heparin) were reviewed, and then analyzed as the bivalirudin group (n=944) and heparin group (n=1,433). The net adverse clinical events (NACEs) within 30 days were obtained, which were defined as major adverse cardiac and cerebral events (MACCEs) + Bleeding Academic Research Consortium (BARC) grade 2-5 bleeding events. Compared with the heparin group, the incidence of NACEs was reduced in the bivalirudin group (9.3 vs. 13.4%; P=0.003). However, no discrepancy was found in the incidence of MACCEs between the groups (5.9 vs. 7.6%; P=0.116). Moreover, the incidences of BARC 2-5 (4.8 vs. 8.7%; P<0.001) and BARC 3-5 bleeding events (1.9 vs. 4.4%; P=0.001) were decreased in the bivalirudin group compared with the heparin group. Following adjustment using multivariate logistic regression analysis, bivalirudin treatment (vs. heparin treatment) was independently associated with lower risks of NACEs [odds ratio (OR), 0.587; P<0.001], MACCEs (OR, 0.689; P=0.041) and BARC 2-5 (OR, 0.459; P<0.001) and 3-5 bleeding events (OR, 0.386; P=0.002). Overall, the present study demonstrated that bivalirudin decreased the risks of NACEs and bleeding events compared with heparin in Chinese patients who undergo PCI. However, further validation is required.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"530"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/85/88/etm-26-05-12229.PMC10587863.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Association of serum levels of vascular endothelial growth factor and placental growth factor in early threatened abortion and premature delivery: A case‑control study.","authors":"Pei Zhang, Yanqi Jin, Xiaohong Hu","doi":"10.3892/etm.2023.12228","DOIUrl":"10.3892/etm.2023.12228","url":null,"abstract":"<p><p>Vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) serve key roles in the regulation of vascular development, revascularization and vasopermeability in the endometrium, decidua and trophoblasts. Furthermore, both VEGF and PlGF are modulators of embryonic vascular development. Thus, the present study aimed to investigate the serum levels of VEGF and PlGF in female patients with early threatened abortion (TA) who experienced preterm delivery. The present case-control study included 130 pregnant patients with or without TA that were admitted to The Maternal and Childcare Hospital of Nantong University from January 2019 to January 2022. Patients were divided into two groups: i) Group A, which included 55 patients diagnosed with TA with slight vaginal bleeding and closed cervical internal os within the first 6-12 weeks of pregnancy; and ii) group B, which included 75 patients with healthy asymptomatic pregnancy. Blood samples were obtained from all patients and VEGF and PlGF levels were examined prior to treatment, and the chi-squared, Student's t-test and two-way ANOVA followed by Bonferroni's post hoc analysis were used to analyze statistical differences between the two patient groups. Results of the present study demonstrated that patients with TA had significantly lower levels of VEGF and PlGF, compared with the controls. In patients with or without TA, the levels of serum PlGF in the preterm delivery group were significantly decreased compared with patients that did not experience preterm delivery. However, there was no significant difference in the levels of VEGF between patients with or without preterm delivery. In addition, lower levels of PlGF, compared with those in patients without TA, may be associated with an increased risk of preterm delivery in patients without early TA.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"529"},"PeriodicalIF":0.0,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/fa/18/etm-26-05-12228.PMC10587882.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Endometrial cell‑derived exosomes facilitate the development of adenomyosis via the IL‑6/JAK2/STAT3 pathway.","authors":"Xinchan Jiang, Xiaobo Chen","doi":"10.3892/etm.2023.12225","DOIUrl":"10.3892/etm.2023.12225","url":null,"abstract":"<p><p>Interleukin (IL)-6 upregulation is involved in the pathogenesis of adenomyosis, but the underlying mechanism remains to be elucidated. Exosomes mediate intercellular communication, therefore the present study investigated whether endometrial cell-derived exosomes mediated the crosstalk between the endometrium and the myometrium via IL-6 signaling. Primary adenomyotic myometrial (AM) cells and eutopic endometrial cells were isolated from patients with adenomyosis. Exosomes were obtained from endometrial cells and incubated with AM cells in the presence or absence of tocilizumab (an IL-6 inhibitor). MTT, flow cytometry and wound-healing assays were performed to examine AM cell proliferation, apoptosis, cell cycle distribution and migration. Western blotting and reverse transcription-quantitative PCR were conducted to determine the expression of the IL-6/Janus kinase 2 (JAK2)/STAT3 pathway proteins. Incubation with endometrial cell exosomes suppressed cell apoptosis of AM cells compared with controls, accompanied by increases in IL-6 production and JAK2/STAT3 phosphorylation. Endometrial cell exosomes promoted cell proliferation, increased the percentage of S-phase cells and enhanced the migration of AM cells. These effects were completely reversed by tocilizumab, along with substantial decreases in IL-6 production and JAK2/STAT3 phosphorylation. Endometrial cell-derived exosomes promote cell proliferation, migration and cell cycle transition of AM cells through IL-6/JAK2/STAT3 activation, facilitating the development of adenomyosis by mediating the crosstalk between the endometrium and the myometrium, and IL-6 targeted therapy could be a complementary approach against adenomyosis.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"26 5","pages":"526"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/33/etm-26-05-12225.PMC10587878.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49695418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}