DNA and cell biology最新文献

筛选
英文 中文
Rosalind Franklin Society Proudly Announces the 2024 Award Recipient for DNA and Cell Biology. 罗莎琳德·富兰克林协会自豪地宣布2024年DNA和细胞生物学奖获得者。
DNA and cell biology Pub Date : 2025-04-01 DOI: 10.1089/dna.2024.0134.rfs2024
Sabrina Nolan Kline
{"title":"Rosalind Franklin Society Proudly Announces the 2024 Award Recipient for <i>DNA and Cell Biology</i>.","authors":"Sabrina Nolan Kline","doi":"10.1089/dna.2024.0134.rfs2024","DOIUrl":"https://doi.org/10.1089/dna.2024.0134.rfs2024","url":null,"abstract":"","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":"44 4","pages":"173"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143784647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanism of LncRNA-MiRNA in Renal Intrinsic Cells of Diabetic Kidney Disease and Potential Therapeutic Direction. 糖尿病肾病肾固有细胞中 LncRNA-MiRNA 的作用机制及潜在治疗方向
DNA and cell biology Pub Date : 2025-03-21 DOI: 10.1089/dna.2025.0026
Xiyue Tian, Min Zhou, Jingbo Zhang, Xinchun Huang, Dongyang Jiang, Jian Liu, Qiong Zhang, Dingguo Chen, Qiongdan Hu
{"title":"Mechanism of LncRNA-MiRNA in Renal Intrinsic Cells of Diabetic Kidney Disease and Potential Therapeutic Direction.","authors":"Xiyue Tian, Min Zhou, Jingbo Zhang, Xinchun Huang, Dongyang Jiang, Jian Liu, Qiong Zhang, Dingguo Chen, Qiongdan Hu","doi":"10.1089/dna.2025.0026","DOIUrl":"https://doi.org/10.1089/dna.2025.0026","url":null,"abstract":"<p><p>The occurrence of diabetic kidney disease (DKD), a critical microvascular issue in diabetes, is progressively on the rise. In recent years, long noncoding RNAs (lncRNAs) have garnered considerable attention as a novel and critical layer of biological regulation. Our knowledge regarding the roles and underlying mechanisms of lncRNAs in various diseases, including DKD, continues to evolve. Similarly, microRNAs (miRNAs), which are small noncoding RNAs, have been recognized as crucial contributors to cellular processes and disease pathogenesis. Emerging studies have highlighted the complex interactions between lncRNAs and miRNAs, particularly in the context of DKD, underscoring their importance in complex human diseases. Renal intrinsic cell damage is an important cause of inducing DKD. Persistent high glucose stimulation leads to remodeling of renal intrinsic cells and a cascade of pathological changes. This article aims to review recent literature on the lncRNAs-mediated regulation of miRNAs affecting renal intrinsic cells in DKD and to propose novel molecular-level therapeutic strategies for DKD. Through in-depth investigation of this dynamic molecular interaction, we can gain a profound understanding of the potential mechanisms underlying diabetic nephropathy, potentially identifying new targets for therapeutic intervention and paving the way for personalized and effective treatments.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability. 有丝分裂中Plk1和PTEN间的串扰影响染色体稳定性。
DNA and cell biology Pub Date : 2025-03-21 DOI: 10.1089/dna.2024.0246
Wei Li, Xianning Wang, Jiannan Liu, Bing Liu, Yongjian Hao
{"title":"Crosstalk Between Plk1 and PTEN in Mitosis Affects Chromosomal Stability.","authors":"Wei Li, Xianning Wang, Jiannan Liu, Bing Liu, Yongjian Hao","doi":"10.1089/dna.2024.0246","DOIUrl":"https://doi.org/10.1089/dna.2024.0246","url":null,"abstract":"<p><p>The mitotic phase involves the distribution and regulation of genetic material. Defects in gene regulation can lead to serious errors in genetic transmission, such as increased instability of chromosomes, thereby increasing susceptibility to cancer and promoting its development. The maintenance of chromosome stability depends on several mechanisms, such as efficient DNA repair, proper sister chromatid separation, and timely cytokinesis. The serine/threonine kinase Plk1 is a key molecule in maintaining chromosome stability, participating in multiple stages of precise regulation during mitosis, including promoting entry into mitosis, facilitating centrosome maturation and bipolar spindle formation, promoting sister chromatid separation, and facilitating cytokinesis. Several proteins can regulate the kinase activity of Plk1 through protein-protein interactions, coordinating the genetic stability of the cell, including the kinases Aurora A, c-Abl, and Chk1 as well as the phosphatase phosphatase and tension homolog (PTEN). PTEN has been described as an essential regulator of Plk1 for dephosphorylation and chromosomal stability during cell division, and Plk1 may directly interact with and phosphorylate PTEN at centromeres. Here, we review the bidirectional interplay between Plk1 and PTEN and how it contributes to genomic stability during mitosis.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143675056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease. 肺的守护者:巨噬细胞在癌症和传染病中的多方面作用。
DNA and cell biology Pub Date : 2025-03-19 DOI: 10.1089/dna.2024.0211
Zhi Liu, Yangjing Ou, Xiaojin He, Ting Yuan, Miao Li, Yunzhu Long, Yukun Li, Yingzheng Tan
{"title":"Guardians of the Lung: The Multifaceted Roles of Macrophages in Cancer and Infectious Disease.","authors":"Zhi Liu, Yangjing Ou, Xiaojin He, Ting Yuan, Miao Li, Yunzhu Long, Yukun Li, Yingzheng Tan","doi":"10.1089/dna.2024.0211","DOIUrl":"https://doi.org/10.1089/dna.2024.0211","url":null,"abstract":"<p><p>The lung as an organ that is fully exposed to the external environment for extended periods, comes into contact with numerous inhaled microorganisms. Lung macrophages are crucial for maintaining lung immunity and operate primarily through signaling pathways such as toll-like receptor 4 and nuclear factor-κB pathways. These macrophages constitute a diverse population with significant plasticity, exhibiting different phenotypes and functions on the basis of their origin, tissue residence, and environmental factors. During lung homeostasis, they are involved in the clearance of inhaled particles, cellular remnants, and even participate in metabolic processes. In disease states, lung macrophages transition from the inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. These distinct phenotypes have varying transcriptional profiles and serve different functions, from combating pathogens to repairing inflammation-induced damage. However, macrophages can also exacerbate lung injury during prolonged inflammation or exposure to antigens. In this review, we delve into the diverse roles of pulmonary macrophages the realms in homeostasis, pneumonia, tuberculosis, and lung tumors.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2024. 审稿人致谢
DNA and cell biology Pub Date : 2025-02-01 DOI: 10.1089/dna.2024.87510.revack
{"title":"Acknowledgment of Reviewers 2024.","authors":"","doi":"10.1089/dna.2024.87510.revack","DOIUrl":"https://doi.org/10.1089/dna.2024.87510.revack","url":null,"abstract":"","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":"44 2","pages":"125-126"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway. 乳腺癌中肥胖与衰老的相互作用及microrna在该通路中的调控功能
DNA and cell biology Pub Date : 2025-02-01 Epub Date: 2024-12-09 DOI: 10.1089/dna.2024.0170
Nima Mahdei Nasir Mahalleh, Mina Hemmati, Arezou Biyabani, Fatemeh Pirouz
{"title":"The Interplay Between Obesity and Aging in Breast Cancer and Regulatory Function of MicroRNAs in This Pathway.","authors":"Nima Mahdei Nasir Mahalleh, Mina Hemmati, Arezou Biyabani, Fatemeh Pirouz","doi":"10.1089/dna.2024.0170","DOIUrl":"10.1089/dna.2024.0170","url":null,"abstract":"<p><p>Breast cancer (BC) is a significant contributor to cancer-related deaths in women, and it has complex connections with obesity and aging. This review explores the interaction between obesity and aging in relation to the development and progression of BC, focusing on the controlling role of microRNAs (miRNAs). Obesity, characterized by excess adipose tissue, contributes to a proinflammatory environment and metabolic dysregulation, which are important in tumor development. Aging, associated with cellular senescence and systemic changes, further exacerbates these conditions. miRNAs, small noncoding RNAs that regulate gene expression, play key roles in these processes, impacting pathways involved in cell proliferation, apoptosis, and cancer metastasis, either as tumor suppressors or oncogenes. Importantly, specific miRNAs are implicated in mediating the impact of obesity and aging on BC. Exploring the regulatory networks controlled by miRNAs provides valuable information on new targets for therapy and predictive markers, demonstrating the potential for using miRNA-based interventions to treat BC in obese and elderly individuals. This review emphasizes the importance of integrated research strategies to understand the complex connections between obesity, aging, and miRNA regulation in BC.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"55-81"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Analysis of Autophagy-Related Genes as Diagnostic Markers and Potential Therapeutic Targets for Tuberculosis Through Bioinformatics. 自噬相关基因作为结核病的诊断标记和潜在治疗靶点的生物信息学鉴定与分析。
DNA and cell biology Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI: 10.1089/dna.2024.0166
Tingting Luo, Shijie Shen, Yufei Sun, Saeed El-Ashram, Xia Zhang, Keyu Liu, Chengzhang Cao, Reem Atalla Alajmi, Siqi Deng, Jiangdong Wu, Wanjiang Zhang, Hongying Zhang
{"title":"Identification and Analysis of Autophagy-Related Genes as Diagnostic Markers and Potential Therapeutic Targets for Tuberculosis Through Bioinformatics.","authors":"Tingting Luo, Shijie Shen, Yufei Sun, Saeed El-Ashram, Xia Zhang, Keyu Liu, Chengzhang Cao, Reem Atalla Alajmi, Siqi Deng, Jiangdong Wu, Wanjiang Zhang, Hongying Zhang","doi":"10.1089/dna.2024.0166","DOIUrl":"10.1089/dna.2024.0166","url":null,"abstract":"<p><p>According to the World Health Organization, <i>Mycobacterium tuberculosis</i> infections affect approximately 25% of the world's population. There is mounting evidence linking autophagy and immunological dysregulation to tuberculosis (TB). As a result, this research set out to discover TB-related autophagy-related biomarkers and prospective treatment targets. We used five autophagy databases to get genes linked to autophagy and Gene Expression Omnibus databases to get genes connected to TB. Then, functional modules associated with autophagy were obtained by analyzing them using weighted gene co-expression network analysis. Both Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used to examine the autophagy-related genes (ATGs) of important modules. Limma was used to identify differentially expressed ATGs (DE-ATGs), and the external datasets were used to further confirm their identification. We used DE-ATGs and a protein-protein interaction network to search the hub genes. CIBERSORT was used to estimate the kinds and amounts of immune cells. After that, we built a drug-gene interaction network and a network that included messenger RNA, small RNA, and DNA. At last, the differential expression of hub ATGs was confirmed by RT-qPCR, immunohistochemistry, and western blotting. The diagnostic usefulness of hub ATGs was evaluated using receiver operating characteristic curve analysis. Including 508 ATGs, four of the nine modules strongly linked with TB were deemed essential. Interleukin 1B (<i>IL1B</i>), <i>CAPS1</i>, and signal transducer and activator of transcription 1 (<i>STAT1</i>) were identified by intersection out of 22 DE-ATGs discovered by differential expression analysis. Research into immune cell infiltration found that patients with TB had an increased proportion of plasma cells, CD8 T cells, and M0 macrophages. A competitive endogenous RNA network utilized 10 long non-coding RNAs and 2 miRNAs. Then, the <i>IL1B</i>-targeted drug Cankinumad was assessed using this network. During bioinformatics analysis, three hub genes were validated in mouse and macrophage infection models. We found that <i>IL1B</i>, <i>CASP1</i>, and <i>STAT1</i> are important biomarkers for TB. As a result, these crucial hub genes may hold promise as TB treatment targets.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"82-98"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3-Induced m6A Modification Enhances Hsa_Circ_0136959 Expression to Impair the Tumor Characteristics of Papillary Thyroid Carcinoma via Accelerating Ferroptosis. mettl3诱导m6A修饰增强Hsa_Circ_0136959表达,通过加速铁下垂损害甲状腺乳头状癌肿瘤特征
DNA and cell biology Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI: 10.1089/dna.2024.0197
Lan Luo, Yanlei Sun, Zongli Cao
{"title":"METTL3-Induced m6A Modification Enhances Hsa_Circ_0136959 Expression to Impair the Tumor Characteristics of Papillary Thyroid Carcinoma via Accelerating Ferroptosis.","authors":"Lan Luo, Yanlei Sun, Zongli Cao","doi":"10.1089/dna.2024.0197","DOIUrl":"10.1089/dna.2024.0197","url":null,"abstract":"<p><p>The number of cases of papillary thyroid cancer (PTC) has gone up significantly in recent years, with high recurrence. Numerous reports have highlighted the participation of circular RNAs (circRNAs) in regulating the advancement of cancers, including PTC. Furthermore, recent studies suggest that N6-methyladenosine (m6A) modified circRNAs play pivotal roles in cancer progression. Hence, we studied the potential role of a novel circRNA, hsa_circ_0136959, and its regulatory mechanism on m6A modification by methyltransferase-like 3 (METTL3) in the tumor characteristics of PTC. The expressions of hsa_circ_0136959 and <i>METTL3</i> were evaluated in PTC samples and cell lines via quantitative real-time polymerase chain reaction. The effect of hsa_circ_0136959 on the malignant properties of PTC was analyzed by performing Cell Counting Kit-8, colony formation, and transwell assays. In addition, its effects on the levels of markers related to ferroptosis (reactive oxygen species, Fe<sup>2+</sup>, and iron) in PTC cells were also assessed. Bioinformatics analysis was done to determine the hsa_circ_0136959 expression and m6A modification sites on it in PTC. The m6A level of hsa_circ_0136959 was analyzed through methylated (m6A) RNA immunoprecipitation. The hsa_circ_0136959 was observed to be downregulated in both PTC samples and cells. <i>In vitro</i> experiments showed that its overexpression impeded the malignant properties of PTC cells. Moreover, hsa_circ_0136959 overexpression increased the levels of ferroptosis-related markers in PTC cells. We also found that <i>METTL3</i> was notably reduced in PTC samples and was positively correlated with hsa_circ_0136959. Mechanistically, METTL3 enhanced hsa_circ_0136959 expression through m6A modification. Our results demonstrate that METTL3-mediated m6A modification elevated hsa_circ_0136959 expression and subsequently restricted the tumor characteristics of PTC by accelerating ferroptosis.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"99-108"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142775874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. 吡非尼酮可下调 eIF6、P311 和 TGF-β 的表达并改善胆管结扎诱导的 Wistar 大鼠肝纤维化:肝脏再生的证据
DNA and cell biology Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI: 10.1089/dna.2024.0194
Zeynab Yousefi, Mitra Nourbakhsh, Abbas Sahebghadam Lotfi
{"title":"Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration.","authors":"Zeynab Yousefi, Mitra Nourbakhsh, Abbas Sahebghadam Lotfi","doi":"10.1089/dna.2024.0194","DOIUrl":"10.1089/dna.2024.0194","url":null,"abstract":"<p><p>Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"109-124"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142840621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lidocaine Inhibits the Proliferation of Non-Small Cell Lung Cancer and Exerts Anti-Inflammatory Effects Through the TLR-9/MyD88/NF-κB Pathway. 利多卡因通过TLR-9/MyD88/NF-κB通路抑制非小细胞肺癌增殖并发挥抗炎作用
DNA and cell biology Pub Date : 2025-01-01 Epub Date: 2025-01-28 DOI: 10.1089/dna.2024.0207
Lin Ma, Weiliang Cong, Hongwei Zhang, Wenhua Zhang, Yuru Zhan, Yang Liu, Junting Zhang, Zhongqun Wang, Yu Gao, Bo Han, Ying Liu, Liang Zhao
{"title":"Lidocaine Inhibits the Proliferation of Non-Small Cell Lung Cancer and Exerts Anti-Inflammatory Effects Through the TLR-9/MyD88/NF-κB Pathway.","authors":"Lin Ma, Weiliang Cong, Hongwei Zhang, Wenhua Zhang, Yuru Zhan, Yang Liu, Junting Zhang, Zhongqun Wang, Yu Gao, Bo Han, Ying Liu, Liang Zhao","doi":"10.1089/dna.2024.0207","DOIUrl":"10.1089/dna.2024.0207","url":null,"abstract":"<p><p>Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities. This study was designed to explore the impact of lidocaine on NSCLC cell proliferation and inflammation, particularly focusing on the Toll-like receptor 9 (TLR)-9/MyD88/NF-κB signaling pathway. A nude mice model of NSCLC was employed, with animals receiving lidocaine at different concentrations. <i>In vitro</i> experiments on A549 cells involved exposure to lidocaine, followed by assessment of cell viability, cytokine expression, and TLR-9 levels using the 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, enzyme-linked immunosorbent assay, and Quantitative Real-time polymerase chain reaction (qPCR). Protein levels were evaluated via Western blot analysis. Additionally, A549 cells were transfected with a TLR-9-overexpressing lentivirus to dissect the role of TLR-9 in lidocaine's mechanism of action. Treatment with lidocaine led to a significant reduction in tumor dimensions and a decrease in inflammatory marker expression in the NSCLC mouse model. In cellular assays, lidocaine effectively suppressed A549 cell proliferation and the expression of inflammatory cytokines. The overexpression of TLR-9 partially negated the suppressive effects of lidocaine, underscoring the significance of the TLR-9/MyD88/NF-κB pathway in mediating lidocaine's effects. Lidocaine's inhibitory effects on NSCLC cell proliferation and its anti-inflammatory mechanisms are mediated through the TLR-9/MyD88/NF-κB pathway. The study's results offer promising insights into the therapeutic potential of lidocaine in NSCLC and pave the way for future investigations into its application in cancer therapy.</p>","PeriodicalId":93981,"journal":{"name":"DNA and cell biology","volume":" ","pages":"161-171"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143054588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信