Current molecular pharmacology最新文献

筛选
英文 中文
Gentiopicroside Ameliorated Ductular Reaction and Inflammatory Response in DDC-induced Murine Cholangiopathies Model. 龙胆苦苷改善DDC诱导的小鼠胆管疾病模型中的导管反应和炎症反应。
Current molecular pharmacology Pub Date : 2023-10-19 DOI: 10.2174/0118761429251911231011092145
Juan Hao, Jian Wu, Quanjun Yang, Kan Lu, Yi Xu, Yiyue Chen, Jibo Liu, Xiaohong Shao, Chunling Zhu, Yaqin Ding, Xin Xie
{"title":"Gentiopicroside Ameliorated Ductular Reaction and Inflammatory Response in DDC-induced Murine Cholangiopathies Model.","authors":"Juan Hao,&nbsp;Jian Wu,&nbsp;Quanjun Yang,&nbsp;Kan Lu,&nbsp;Yi Xu,&nbsp;Yiyue Chen,&nbsp;Jibo Liu,&nbsp;Xiaohong Shao,&nbsp;Chunling Zhu,&nbsp;Yaqin Ding,&nbsp;Xin Xie","doi":"10.2174/0118761429251911231011092145","DOIUrl":"https://doi.org/10.2174/0118761429251911231011092145","url":null,"abstract":"<p><strong>Background: </strong>Cholangiopathies comprise a spectrum of diseases without curative treatments. Pharmacological treatments based on bile acid (BA) metabolism regulation represent promising therapeutic strategies for the treatment of cholangiopathies. Gentiopicroside (GPS), derived from the Chinese medicinal herb Gentianae Radix, exerts pharmacological effects on bile acid metabolism regulation and oxidative stress.</p><p><strong>Objective: </strong>The present study aims to investigate the effect of GPS on 3,5-diethoxycarbonyl-1,4dihydrocollidine (DDC)-induced cholangiopathy.</p><p><strong>Methods: </strong>Two independent animal experiments were designed to evaluate the comprehensive effect of GPS on chronic DDC diet-induced cholangiopathy, including bile duct obliteration, ductular reaction, BA metabolism reprogramming, liver fibrosis, oxidative stress and inflammatory responses.</p><p><strong>Results: </strong>In the first pharmacological experiment, three doses of GPS (5, 25 and 125 mg/kg) were injected intraperitoneally into mice fed a DDC diet for 14 days. DDC induced a typical ductular reaction, increased periductal fibrosis and mixed inflammatory cell infiltration in the portal areas. GPS treatment showed dose-dependent improvements in the ductular reaction, BA metabolism, fibrosis, oxidative stress and inflammatory response. In the second experiment, a high dose of GPS was injected intraperitoneally into control mice for 28 days, resulting in no obvious histologic changes and significant serologic abnormalities in liver function. However, GPS inhibited DDC-induced oxidative stress, serum and hepatic BA accumulation, proinflammatory cytokine production, and immunocyte infiltration. Specifically, the GPS-treated groups showed decreased infiltration of monocyte-derived macrophages and CD4+ and CD8+ T lymphocytes, as well as preserved Kupffer cells.</p><p><strong>Conclusion: </strong>GPS alleviated chronic DDC diet-induced cholangiopathy disorder by improving the ductular reaction, periductal fibrosis, oxidative stress and inflammatory response. Its dosage-dependent pharmacological effects indicated that GPS warrants its further evaluation in clinical trials for cholangiopathy.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50164218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual Role of Pregnane X Receptor in Nonalcoholic Fatty Liver Disease. 妊娠X受体在非酒精性脂肪肝中的双重作用。
Current molecular pharmacology Pub Date : 2023-10-13 DOI: 10.2174/0118761429259143230927110556
Yuan Xu, Ziming An, Shufei Wang, Yiming Ni, Mingmei Zhou, Qin Feng, Xiaojun Gou, Meiling Xu, Ying Qi
{"title":"Dual Role of Pregnane X Receptor in Nonalcoholic Fatty Liver Disease.","authors":"Yuan Xu, Ziming An, Shufei Wang, Yiming Ni, Mingmei Zhou, Qin Feng, Xiaojun Gou, Meiling Xu, Ying Qi","doi":"10.2174/0118761429259143230927110556","DOIUrl":"https://doi.org/10.2174/0118761429259143230927110556","url":null,"abstract":"<p><p>The incidence of nonalcoholic fatty liver disease (NAFLD) has been rising worldwide in parallel with diabetes and metabolic syndrome. NAFLD refers to a spectrum of liver abnormalities with a variable course, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), eventually leading to cirrhosis and hepatocellular carcinoma. Pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a prominent part in the regulation of endogenous metabolic genes in NAFLD. Recent studies have suggested that PXR has therapeutic potential for NAFLD, yet the relationship between PXR and NAFLD remains controversial. In this review, PXR is proposed to play a dual role in the development and progression of NAFLD. Its activation will aggravate steatosis of the liver, reduce inflammatory response, and prevent liver fibrosis. In addition, the interactions between PXR, substance metabolism, inflammation, fibrosis, and gut microbiota in non-alcoholic fatty liver were elucidated. Due to limited therapeutic options, a better understanding of the contribution of PXR to the pathogenesis of NAFLD should facilitate the design of innovative drugs targeting NAFLD.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71490309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current strategies for the management of psoriasis with potential pharmacological pathways using herbals and immuno-biologicals. 使用草药和免疫生物制剂治疗银屑病的当前策略,具有潜在的药理学途径。
Current molecular pharmacology Pub Date : 2023-09-15 DOI: 10.2174/1874467217666230915125613
Kiran Singh Sharma, Sumit Kumar
{"title":"Current strategies for the management of psoriasis with potential pharmacological pathways using herbals and immuno-biologicals.","authors":"Kiran Singh Sharma,&nbsp;Sumit Kumar","doi":"10.2174/1874467217666230915125613","DOIUrl":"https://doi.org/10.2174/1874467217666230915125613","url":null,"abstract":"<p><strong>Background: </strong>Psoriasis is an acute to chronic multifunctional inflammatory skin disorder mediated through T-cell activation, dendritic cell intervention, local vascular variations, atypical keratinocyte proliferation, and neutrophil activation, leading to a skin disorder with no permanent cure.</p><p><strong>Objective: </strong>This review aims to find a potent, secure, and dependable medication, with a more scientific examination of herbal resources and recent targeted immunobiological therapies.</p><p><strong>Method: </strong>Reports evaluating the effectiveness of biologics & herbal remedies for the topical therapy of psoriasis against control therapies were taken into consideration (placebo or active therapy). The work examined cellular circuits involved in inflammation with its immunogenetic mechanism behind various options available for treating psoriasis in addition to the role of agents inducing psoriasis.</p><p><strong>Results: </strong>The extent of psoriasis can range from small, localized spots to total body coverage, and it can happen at any stage of life. Several theories exist for clarification however, the exact cause of psoriasis is not entirely understood. Researchers have discovered genetic loci linkages, environmental changes, drug induction, lifestyle conditions, some infections, etc. resulting in this disorder. There are numerous known conventional medical treatments for psoriasis, ranging from topical and systemic medicines to phototherapy or combinations of both with recent immunobiological treatment. However, the majority of these treatments are ineffective and have a variety of side effects that limit their long-term usage, such as cutaneous atrophy, tissue toxicity, mutagenicity, and immunosuppression.</p><p><strong>Conclusion: </strong>Herbal extracts or isolated compounds can be considered as a substitute for conventional psoriasis treatment. Unfortunately, many investigations often provide a small amount of facts about the safety and effectiveness of topically applied herbal remedies for the treatment of psoriasis. Thus, further factual evidences and validations are needed to promote herbal options, which must be supported by rigorous animal studies or clinical trials using standardised materials and compositions.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PF-04449913 Inhibits Proliferation and Metastasis of Colorectal Cancer Cells by Down-regulating MMP9 Expression through the ERK/p65 Pathway. PF-04449913通过ERK/p65途径下调MMP9的表达,抑制大肠癌癌症细胞的增殖和转移。
Current molecular pharmacology Pub Date : 2023-09-15 DOI: 10.2174/1874467217666230915125622
Yejiao Ruan, Guangrong Lu, Yaojun Yu, Yue Luo, Hao Wu, Yating Shen, Zejun Gao, Yao Shen, Zhenzhai Cai, Liyi Li
{"title":"PF-04449913 Inhibits Proliferation and Metastasis of Colorectal Cancer Cells by Down-regulating MMP9 Expression through the ERK/p65 Pathway.","authors":"Yejiao Ruan,&nbsp;Guangrong Lu,&nbsp;Yaojun Yu,&nbsp;Yue Luo,&nbsp;Hao Wu,&nbsp;Yating Shen,&nbsp;Zejun Gao,&nbsp;Yao Shen,&nbsp;Zhenzhai Cai,&nbsp;Liyi Li","doi":"10.2174/1874467217666230915125622","DOIUrl":"https://doi.org/10.2174/1874467217666230915125622","url":null,"abstract":"<p><strong>Introduction: </strong>Colorectal cancer remains a life-threatening malignancy with increasing morbidity and mortality worldwide. Therefore, new and effective anti-colorectal cancer therapeutics are urgently needed.</p><p><strong>Method: </strong>In this study, we have studied the anti-tumor properties and potential mechanisms of PF-04449913. Colorectal cancer cell viability was reduced by PF-04449913 in a dose-dependent manner. The migration and invasion ability of malignant colon cells were attenuated by the drug, as demonstrated by the Transwell test. Moreover, PF-04449913 repressed the phosphorylation levels of ERK and other proteins, and the expression levels of MMP9. The anti-tumor effects of the drug in vivo were demonstrated in BALB/c-nude mice models, and PF-04449913 inhibited the malignant phenotype of colorectal cancer cells, including reduction of tumor size and promotion of apoptosis. At the molecular level, PF-04449913 induced a significant decrease in ERK and p65 protein phosphorylation levels and inhibited MMP9 protein expression.</p><p><strong>Results: </strong>Both in vivo and in vitro results showed PF-04449913 to demonstrate antitumor effects, which have been proposed to be mediated through blockade of the ERK/p65 signaling pathway, and subsequent repression of MMP9 expression.</p><p><strong>Conclusion: </strong>Our study provides a new perspective on the potential clinical application of PF-04449913 in the treatment of colorectal cancer.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41175828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信