{"title":"Regulatory Mechanisms of STAT3 in GBM and its Impact on TMZ Resistance","authors":"Guangyao Lv, Xueying Li, Hongtu Deng, Jianqiao Zhang, Xinfu Gao","doi":"10.2174/0118761429386400250415053351","DOIUrl":"10.2174/0118761429386400250415053351","url":null,"abstract":"<p><p>STAT3, a key member of the Signal Transducer and Activator of Transcription (STAT) family, plays a vital role in the development and progression of glioblastoma (GBM), as well as in the resistance to the chemotherapy drug temozolomide (TMZ). This review outlines the dysregulation of STAT3 in GBM, focusing on its activation mechanisms and its contribution to TMZ resistance. STAT3 can be activated by cytokines, like IL-6, growth factors, and membrane receptors, like EGFR. In GBM, constitutively active STAT3 enhances tumor growth and therapy resistance. Specifically, resistance to TMZ, a standard chemotherapeutic agent for GBM, is facilitated by STAT3-induced expression of the DNA repair enzyme O6-methylguanine-DNA methyltransferase and anti-apoptotic proteins like Bcl-2, as well as through the regulation of microRNAs. To combat TMZ resistance in GBM, strategies that inhibit STAT3 activity have been explored. Recent advancements, such as the use of small molecule inhibitors targeting STAT3 and its upstream or downstream regulators, RNA-based therapies, as well as the development of nanocarriers for targeted delivery of STAT3-<i>targeting small interfering RNA</i> across the blood-brain barrier, have demonstrated significant potential in enhancing the sensitivity of GBM to TMZ. These targeted therapies hold promise for improving the treatment outcomes of patients with GBM.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429386400"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144052214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ergothioneine Suppresses Amyloid β-Induced Tau Phosphorylation and Cytotoxicity by Inactivating Glycogen Synthase Kinase-3β in Cultured Neurons","authors":"Fumiya Shibagaki, Yusei Hayashi, Satoshi Matsumoto, Noritaka Nakamichi","doi":"10.2174/0118761429387340250507055903","DOIUrl":"10.2174/0118761429387340250507055903","url":null,"abstract":"<p><strong>Background: </strong>Amyloid-beta (Aβ) oligomers, formed by Aβ aggregation, are the causative agent of Alzheimer's disease and induce the hyperphosphorylation of tau protein (Tau) and neurotoxicity. The antioxidant ergothioneine (ERGO) is transferred to the brain after oral ingestion and protects against Aβ- induced neurotoxicity and cognitive dysfunction. However, the impact of ERGO on Aβ oligomer-induced Tau phosphorylation remains unclear.</p><p><strong>Objective: </strong>To investigate the effects of ERGO on Aβ-induced Tau phosphorylation and their mechanism in neurons.</p><p><strong>Method: </strong>SH-SY5Y cells differentiated into cholinergic neuron-like cells or primary cultured neurons derived from the murine hippocampus were pretreated with ERGO and exposed to Aβ<sub>25-35</sub> oligomers. Cytotoxicity was evaluated by assessing the chemiluminescence of dead cell-derived proteases. The expression of phosphorylated (p-) Tau at serine 396, p-glycogen synthase kinase-3 beta (GSK-3β) at serine 9, amyloid precursor protein (APP), beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; β-secretase), and nicastrin, which is a component protein of the γ-secretase complex, was assessed by western blotting.</p><p><strong>Result: </strong>Differentiated SH-SY5Y cells exhibited increased neurite outgrowth and mRNA expression of <i>choline acetyltransferase</i>, and showed cholinergic neuron-like characteristics compared with those of undifferentiated cells. ERGO significantly suppressed the Aβ<sub>25-35</sub> oligomer-induced increased cytotoxicity and p-Tau expression in differentiated SH-SY5Y cells and cultured hippocampal neurons. ERGO recovered the decreased expression of p-GSK-3β at serine 9, indicating its inactivation, and the increased expression of APP, BACE1, and nicastrin induced by Aβ<sub>25-35</sub> oligomer exposure in cultured hippocampal neurons. These ERGO effects on Aβ<sub>25-35</sub> oligomers were inhibited by treatment with LY294002, which activated GSK-3β.</p><p><strong>Conclusion: </strong>ERGO may suppress the increased expression of p-Tau and proteins involved in Aβ production induced by Aβ oligomers by inactivating GSK-3β, thereby mitigating neurotoxicity.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429387340"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hai Xiao, Yan Xiao, Xueliang Zeng, Huihui Xie, Ziyao Wang, Yu Guo
{"title":"Dihydromyricetin Improves Myocardial Functioning by Influencing Autophagy Through SNHG17/Mir-34a/SIDT2 Axis.","authors":"Hai Xiao, Yan Xiao, Xueliang Zeng, Huihui Xie, Ziyao Wang, Yu Guo","doi":"10.2174/0118761429374180250212114144","DOIUrl":"10.2174/0118761429374180250212114144","url":null,"abstract":"<p><strong>Background: </strong>Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes Mellitus (DM). Dihydromyricetin (DHM) is a flavonoid compound with potential cardioprotective effects, but the mechanism of DHM in diabetes-induced myocardial damage and autophagy is not fully understood.</p><p><strong>Objective: </strong>The objective of this study is to evaluate the effects of DHM on cardiac function and pathological features of DCM, with a particular focus on its impact on the SNHG17/miR-34a/SIDT2 pathway.</p><p><strong>Methods: </strong>In vivo experiments: After constructing the DM mice model, it was treated with different doses of DHM. Masson's staining and collagen deposition/fibrosis markers were used to evaluate the effect of DHM on cardiac fibrosis in DM mice. In vitro experiments: 3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to determine the influence of DHM on cell viability and apoptosis, respectively, in high glucose-induced HL-1 cells. Enzyme-labeled Immunosorbent Assay was used to detect levels of cardiac enzyme and inflammation-related factors, while Western blot analyzed the levels of AMPK/mTOR and autophagy-related proteins.</p><p><strong>Results: </strong>DHM significantly improved cardiac function in DM and reduced Renin-angiotensin-aldosterone system markers, alongside decreasing markers of cardiomyocyte damage. DHM mitigated myocardial fibrosis, inflammatory marker levels, and autophagy dysregulation while upregulating lncRNA SNHG17 expression. Mechanistically, DHM acted through the SNHG17/miR-34a/SID1 transmembrane family member 2 (SIDT2) axis, reducing miR-34a expression and restoring SIDT2-mediated autophagy balance, ultimately alleviating apoptosis, inflammation, and fibrosis in diabetic cardiac tissue and high-glucose-induced HL-1 cells.</p><p><strong>Conclusion: </strong>DHM improves cardiac function and mitigates DCM progression by targeting the SNHG17/miR-34a/SIDT2 regulatory axis, thereby reducing inflammation, fibrosis, and autophagy dysregulation. These findings provide mechanistic insights into DHM’s cardioprotective effects, supporting its potential as a therapeutic agent for DCM.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429374180"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143461269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Doxazosin Attenuates Development of Testosterone Propionate-induced Prostate Growth by regulating TGF-β/Smad Signaling Pathway, Prostate-specific Antigen Expression and Reversing Epithelial-mesenchymal Transition in Mice and Stroma Cells.","authors":"YiDan Li, BingHua Tu, ZiTong Wang, ZiChen Shao, ChenHao Fu, JianQiang Hua, ZiWen Zhang, Peng Zhang, Hui Sun, ChenYan Mao, Chi-Ming Liu","doi":"10.2174/0118761429315125240919033502","DOIUrl":"10.2174/0118761429315125240919033502","url":null,"abstract":"<p><strong>Background: </strong>Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial-mesenchymal transition (EMT) plays an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.</p><p><strong>Objectives: </strong>The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.</p><p><strong>Methods: </strong>Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1).</p><p><strong>Results: </strong>The prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination (doxazosin + finasteride) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the prostate specific antigen both in vivo and in vitro.</p><p><strong>Conclusion: </strong>This study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429315125"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sirt1 Regulates Phenotypic Transformation of Diabetic Cardiac Fibroblasts through Akt/Α-SMA Pathway.","authors":"Xiaomei Li, Shimeng Huang, Yuanbo Gao, Ying Wang, Siyu Zhao, Bing Lu, Aibin Tao","doi":"10.2174/0118761429353519250106115016","DOIUrl":"10.2174/0118761429353519250106115016","url":null,"abstract":"<p><strong>Aims: </strong>Cardiac fibrosis causes most pathological alterations of cardiomyopathy in diabetes and heart failure patients. The activation and transformation of cardiac fibroblasts (CFs) are the main pathological mechanisms of cardiac fibrosis. It has been established that Sirtuin1 (Sirt1) plays a protective role in the pathogenesis of cardiovascular disorders. This study aimed to ascertain the Sirt1 effect on the phenotypic transformation of CFs in diabetes and its possible mechanisms.</p><p><strong>Methods: </strong>Type 1 diabetes was induced in 6-week-old male mice by subcutaneously injecting 50 mg/kg streptozotocin (STZ, i.p.). Western blotting, collagen staining, and echocardiography were performed to detect protein expression and assess cardiac fibrosis and function in vivo. We used high glucose (HG) to culture CFs prior to protein expression measurement in vitro.</p><p><strong>Results: </strong>Upregulation of Sirt1 expression effectively alleviated the degree of cardiac fibrosis by improving cardiac function in diabetic mice. In vitro experiments revealed that HG decreased the protein expression levels of Sirt1, but increased those of type I collagen and alpha-smooth muscle actin (α-SMA), as well as the transdifferentiation of fibroblasts into myofibroblasts. Further studies confirmed that downregulation of Sirt1 expression in the HG environment reduced the protein kinase-B (Akt) phosphorylation, thereby promoting the transdifferentiation of CFs into myofibroblasts coupled with the deterioration of cardiac function.</p><p><strong>Conclusion: </strong>Diabetes mellitus leads to downregulation of Sirt1 protein expression in CFs and decreased Akt phosphorylation, which promotes the transdifferentiation of CFs into myofibroblasts, the pathological process of cardiac fibrosis, and mediates the incidence and development of diabetic cardiomyopathy.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429353519"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142981021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wanwen Xu, Shengbo Liao, Ying Hu, Yinghui Huang, Jie Zhou
{"title":"Upregulation of miR-3130-5p Enhances Hepatocellular Carcinoma Growth by Suppressing Ferredoxin 1 : miR-3130-5p Enhances HCC Growth via Inhibiting FDX1.","authors":"Wanwen Xu, Shengbo Liao, Ying Hu, Yinghui Huang, Jie Zhou","doi":"10.2174/0118761429358008250305070518","DOIUrl":"10.2174/0118761429358008250305070518","url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma [HCC] is a leading cause of cancer-related mortality worldwide, necessitating the exploration of novel therapeutic targets. Although accumulating studies have identified Ferredoxin 1 [FDX1], a key regulator of cuproptosis, as a candidate tumor suppressor and potential therapeutic target, its role and mechanism remain elusive in HCC.</p><p><strong>Methods: </strong>The FDX1 expression was investigated in human HCC tissues and cell lines. Potential microRNAs targeting FDX1 were predicted by bioinformatic analysis and validated using qPCR screening, a dual luciferase reporter assay, MiR-3130-5p and miR-1910-3p mimics and inhibitors, overexpression plasmids, and xenograft nude mouse model. The correlation between miR-3130-5p/FDX1 axis and HCC patient prognosis was analyzed by using Kaplan-Meier survival analysis.</p><p><strong>Results: </strong>We demonstrated that the expression of FDX1 was downregulated in human HCC tissues and cell lines compared to non-cancerous counterparts, and the downregulation of FDX1 was associated with poor overall survival in HCC patients. Subsequent bioinformatic analysis and experimental validations showed that FDX1 expression was reduced by microRNA [miR]-3130-5p mimic while induced by miR-3130-5p inhibitor. Further, miR-3130-5p was upregulated in HCC tissues and cells, correlating with a poor prognosis of HCC patients. Besides, lentivirus-mediated overexpression of miR-3130-5p significantly enhanced HCC growth in xenograft nude mouse models. Mechanistically, it was demonstrated that miR-3130-5p inhibited FDX1 expression via binding to its 3' untranslated region [3' UTR], while overexpression of FDX1 counteracted the promoting effect of miR-3130-5p on HCC cell proliferation.</p><p><strong>Conclusion: </strong>These findings suggest the miR-3130-5p/FDX1 axis as a prognostic biomarker as well as a potential therapeutic target in HCC.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429358008"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143660028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Li, Jiaoxiu Fan, Min Hu, Junyu Xu, Ziyue He, Jun Zeng
{"title":"Quercetin Enhances 5-fluorouracil Sensitivity by Regulating the Autophagic Flux and Inducing Drp-1 Mediated Mitochondrial Fragmentation in Colorectal Cancer Cells.","authors":"Mei Li, Jiaoxiu Fan, Min Hu, Junyu Xu, Ziyue He, Jun Zeng","doi":"10.2174/0118761429283717231222104730","DOIUrl":"10.2174/0118761429283717231222104730","url":null,"abstract":"<p><strong>Background: </strong>While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms.</p><p><strong>Methods: </strong>MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis- and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red.</p><p><strong>Results: </strong>The results demonstrated quercetin-induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetininduced cytotoxicity, indicating that quercetin-induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5- FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ.</p><p><strong>Conclusion: </strong>Our findings suggested that quercetin could induce protective autophagy and Drp-1-mediated mitochondrial fragmentation and enhance the sensitivity of CRC cells to conventional agent 5-FU, which not only suggests that quercetin may act as a chemotherapeutic adjuvant but also implies that the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429283717"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140133635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Huang, Weichao Sun, Danli Zhu, Li Liu, Jianguo Feng, Qian Yi
{"title":"RBM3 Inhibits the Cell Cycle of Cutaneous Squamous Cell Carcinoma through the PI3K/AKT Signaling Pathway.","authors":"Yan Huang, Weichao Sun, Danli Zhu, Li Liu, Jianguo Feng, Qian Yi","doi":"10.2174/0118761429323760240712050006","DOIUrl":"10.2174/0118761429323760240712050006","url":null,"abstract":"<p><strong>Background: </strong>RBM3 is a key RNA-binding protein that has been implicated in various cellular processes, including cell proliferation and cell cycle regulation. However, its role in cutaneous squamous cell carcinoma (cSCC) remains poorly understood.</p><p><strong>Aims: </strong>We aimed to investigate the expression levels of RNA-binding motif protein 3 (RBM3) in patients with cSCC and evaluate its effect on cell ability in cSCC and its underlying regulatory mechanisms.</p><p><strong>Methods: </strong>The expression of RBM3 in cSCC tissues and A431 cells was determined via immunohistochemistry and western blotting. Plenti-CMV-RBM3- Puro was used to overexpress RBM3. The effect of RBM3 on the proliferation ability of cSCC cells was evaluated using MTT and colony formation assay. Cell apoptosis and cell cycle were determined using flow cytometry, while the protein expressions of BAX, NF-κB, BCL2, CASPASE 3, CYCLIN B, CYCLIN E, CDK1, phosphorylated (P)-CDK1, CDK2, P-CDK2, ERK, P-ERK, P-AMPK, AKT, P-AKT, MDM2, and P53 were assessed using western blotting.</p><p><strong>Results: </strong>RBM3 expression was significantly downregulated in cSCC tissues and A431 cells. RBM3 overexpression significantly inhibited the cell proliferation and colony formation ability of A431. Notably, RNA-seq results showed that the differentially expressed genes associated with RBM3 were primarily involved in the regulation of the cell cycle, oocyte meiosis, and P53 signaling pathway, as well as the modulation of the MAPK, AMPK, Hippo, mTOR, PI3K/AKT, Wnt, FoxO, and NF-κB signaling pathways. Additionally, our findings demonstrated that overexpression of RBM3 inhibited cell proliferation and induced cell cycle arrest of cSCC through modulation of the PI3K/AKT signaling pathway.</p><p><strong>Conclusion: </strong>This study provides novel insights into the suppressive roles of RBM3 in cell proliferation and the cell cycle in cSCC and highlights its therapeutic potential for cSCC.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429323760"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kajal Sherawat, Sidharth Mehan, Zuber Khan, Aarti Tiwari, Ghanshyam Das Gupta, Acharan S Narula
{"title":"Neuroprotective Potential of Tanshinone-IIA in Mitigating Propionic Acidinduced Experimental Autism-like Behavioral and Neurochemical Alterations: Insights into c-JNK and p38MAPK Pathways","authors":"Kajal Sherawat, Sidharth Mehan, Zuber Khan, Aarti Tiwari, Ghanshyam Das Gupta, Acharan S Narula","doi":"10.2174/0118761429326799241121104310","DOIUrl":"10.2174/0118761429326799241121104310","url":null,"abstract":"<p><strong>Introduction: </strong>Autism is a neurodevelopmental disorder associated with mitochondrial dysfunction, apoptosis, and neuroinflammation. These factors can lead to the overactivation of c-JNK and p38MAPK.</p><p><strong>Methods: </strong>In rats, stereotactic intracerebroventricular (ICV) injection of propionic acid (PPA) results in autistic-like characteristics such as poor social interaction, repetitive behaviours, and restricted communication. Research has demonstrated the beneficial effects of phytochemicals derived from plants in treating neurological disorders. Tanshinone-IIA (Tan-IIA) is a chemical found in the root of Salvia miltiorrhiza. It has neuroprotective potential by inhibiting c-JNK and p38MAPK against behavioral and neurochemical alterations in PPA-induced autistic rats. We observe behavioral changes, alterations in apoptotic markers, myelin basic protein (MBP), neurofilament-Light (NEFL), inflammatory cytokines, brain-derived neurotrophic factor (BDNF), and neurotransmitter imbalances using different brain regions (cerebral cortex, hippocampus, striatum), as well as biological samples, cerebrospinal fluid (CSF), and blood plasma.</p><p><strong>Results: </strong>Persistent administration of 30 mg/kg and 60 mg/kg Tan-IIA via intraperitoneal injection reduced these alterations dose-dependently. Anisomycin (3 mg/kg.,i.p.) as a SAPK (c-JNK and p38MAPK) agonist was administered to assess the neuroprotective effect of Tan-IIA in autistic rats. Tan- IIA's molecular interactions with c-JNK and p38MAPK were confirmed using silico analysis. We also observed gross morphological, histopathological, and Luxol Fast Blue (LFB) myelin straining changes in whole and coronal brain sections.</p><p><strong>Conclusion: </strong>Thus, Tan-IIA has a neuroprotective potential by inhibiting the c-JNK and p38MAPK signalling pathways, which reduces the behavioral and neurochemical abnormalities induced by PPA in adult Wistar rats, indicating that current results should be studied further for the diagnosis and treatment of autism.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429326799"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahtziri Socorro Carranza-Aranda, Anne Santerre, Aldo Segura-Cabrera, Albertina Cárdenas-Vargas, Moisés Martínez-Velázquez, Rodolfo Hernández-Gutiérrez, Sara Elisa Herrera-Rodríguez
{"title":"Chrysin: A Potential Antiandrogen Ligand to Mutated Androgen Receptors in Prostate Cancer.","authors":"Ahtziri Socorro Carranza-Aranda, Anne Santerre, Aldo Segura-Cabrera, Albertina Cárdenas-Vargas, Moisés Martínez-Velázquez, Rodolfo Hernández-Gutiérrez, Sara Elisa Herrera-Rodríguez","doi":"10.2174/0118761429350210250102131611","DOIUrl":"10.2174/0118761429350210250102131611","url":null,"abstract":"<p><strong>Background: </strong>Androgen receptor mutations, particularly T877A and W741L, promote prostate cancer (PCa). The main therapies against PCa use androgen receptor (AR) antagonists, including Bicalutamide; but these drugs lose their effectiveness over time. Chrysin is a flavonoid with several biological activities, including antitumoral properties; however, its potential as an antiandrogen must be explored.</p><p><strong>Objective: </strong>The present study aimed to characterize and compare the molecular interactions of chrysin with wild-type and mutated ARs and their cytotoxic effect in an in vitro model of PCa.</p><p><strong>Methods: </strong>The affinities and molecular interactions of Bicalutamide and chrysin for the wild-type and mutated forms of AR were assessed by molecular docking. The MTT assay was used to evaluate the cytotoxic effect of these ligands on the DU-145 (T877A) and PC3 (W741L) PCa cell lines and on non-tumoral RWPE-1 cells.</p><p><strong>Results: </strong>The molecular dockings predicted a higher affinity of chrysin for the mutated AR than the wild-type AR (WT-AR); meanwhile, Bicalutamide presented a higher affinity for WT-AR. The amino acid residues involved in molecular interactions within the binding site of these receptors changed according to the ligands and AR variants, affecting their affinity scores and biological effects (agonist/antagonists). Chrysin exerted a specific cytotoxic effect against the PCa tumoral cells but none against the non-tumoral cells. In contrast, Bicalutamide showed potent cytotoxicity against all cell lines.</p><p><strong>Conclusion: </strong>This study evidences the potential antiandrogen effect of chrysin on mutated AR and specific cytotoxicity against PCa cells, suggesting that this flavonoid could be considered for PCa therapy.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":"e18761429350210"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142980952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}