{"title":"Doxazosin通过调节TGF-β/Smad信号通路、前列腺特异性抗原表达和逆转小鼠和间质细胞上皮-间质转化,减缓丙酸睾酮诱导的前列腺生长。","authors":"YiDan Li, BingHua Tu, ZiTong Wang, ZiChen Shao, ChenHao Fu, JianQiang Hua, ZiWen Zhang, Peng Zhang, Hui Sun, ChenYan Mao, Chi-Ming Liu","doi":"10.2174/0118761429315125240919033502","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial-mesenchymal transition (EMT) plays an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.</p><p><strong>Objectives: </strong>The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.</p><p><strong>Methods: </strong>Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1).</p><p><strong>Results: </strong>The prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination (doxazosin + finasteride) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the prostate specific antigen both in vivo and in vitro.</p><p><strong>Conclusion: </strong>This study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.</p>","PeriodicalId":93964,"journal":{"name":"Current molecular pharmacology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doxazosin Attenuates Development of Testosterone Propionate-induced Prostate Growth by regulating TGF-β/Smad Signaling Pathway, Prostate-specific Antigen Expression and Reversing Epithelial-mesenchymal Transition in Mice and Stroma Cells.\",\"authors\":\"YiDan Li, BingHua Tu, ZiTong Wang, ZiChen Shao, ChenHao Fu, JianQiang Hua, ZiWen Zhang, Peng Zhang, Hui Sun, ChenYan Mao, Chi-Ming Liu\",\"doi\":\"10.2174/0118761429315125240919033502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial-mesenchymal transition (EMT) plays an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.</p><p><strong>Objectives: </strong>The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.</p><p><strong>Methods: </strong>Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1).</p><p><strong>Results: </strong>The prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination (doxazosin + finasteride) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the prostate specific antigen both in vivo and in vitro.</p><p><strong>Conclusion: </strong>This study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.</p>\",\"PeriodicalId\":93964,\"journal\":{\"name\":\"Current molecular pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current molecular pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118761429315125240919033502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118761429315125240919033502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Doxazosin Attenuates Development of Testosterone Propionate-induced Prostate Growth by regulating TGF-β/Smad Signaling Pathway, Prostate-specific Antigen Expression and Reversing Epithelial-mesenchymal Transition in Mice and Stroma Cells.
Background: Finasteride and doxazosin are used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Epithelial-mesenchymal transition (EMT) plays an important role in BPH, little is known about the growth inhibition and anti-fibrosis effects of doxazosin on the regulation of EMT and morphology in the prostate.
Objectives: The present study examined the effects of doxazosin on testosterone propionate (TP)-induced prostate growth in vivo and in vitro and its impact on the EMT and TGF-β/Smad signaling pathway.
Methods: Doxazosin (5 or 10 mg/kg) and finasteride (10 mg/kg) were administered orally for 28 days in TP-induced mice. The prostate index (prostate/body weight ratio), morphological characteristics and the protein expression of the prostate were examined. We further examined the effects of doxazosin and finasteride on the EMT and TGF-β/Smad signaling pathway in mice and in human prostate stroma cell (WPMY-1).
Results: The prostate wet weight, prostate index decreased after treatment. Doxazosin (5 or 10 mg/kg), finasteride (10 mg/kg) or a combination (doxazosin + finasteride) were shown to reverse the pathological and morphological characteristics of the prostate. Doxazosin and finasteride inhibited TP-induced prostate growth, EMT, and the TGF-β/Smad signaling pathway by downregulating the expression of TGF-β1, TGFBR2, p-Smad2/3, N-cadherin, vimentin, fibronectin and α-SMA, whereas expression of E-cadherin was increased after treatment with either doxazosin or finasteride. Doxazosin (1-50 μM) inhibited normal human prostate stroma cell growth (WPMY-1) after 48 h with or without testosterone treatment. Doxazosin also regulated the EMT and proteins related to the TGF-β/Smad signaling pathway in WPMY-1 cells after 24 h. Additionally, doxazosin decreased protein expression of the prostate specific antigen both in vivo and in vitro.
Conclusion: This study demonstrated that doxazosin inhibits prostate growth by regulating the EMT and TGF-β/Smad signaling pathways in the prostate This finding suggests that doxazosin has potential as a new signaling pathway for the treatment of BPH.