Chemosphere最新文献

筛选
英文 中文
Retraction notice to "Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases"[Chemosphere 307 (2022) 136020]. “多酚在神经退行性疾病治疗和管理中的多重作用”的撤回通知[j]。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-28 DOI: 10.1016/j.chemosphere.2024.143864
Fahadul Islam, Md Mohaimenul Islam, Atkia Farzana Khan Meem, Mohamed H Nafady, Md Rezaul Islam, Aklima Akter, Saikat Mitra, Fahad A Alhumaydhi, Talha Bin Emran, Ameer Khusro, Jesus Simal-Gandara, Aziz Eftekhari, Fatemeh Karimi, Mehdi Baghayeri
{"title":"Retraction notice to \"Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases\"[Chemosphere 307 (2022) 136020].","authors":"Fahadul Islam, Md Mohaimenul Islam, Atkia Farzana Khan Meem, Mohamed H Nafady, Md Rezaul Islam, Aklima Akter, Saikat Mitra, Fahad A Alhumaydhi, Talha Bin Emran, Ameer Khusro, Jesus Simal-Gandara, Aziz Eftekhari, Fatemeh Karimi, Mehdi Baghayeri","doi":"10.1016/j.chemosphere.2024.143864","DOIUrl":"10.1016/j.chemosphere.2024.143864","url":null,"abstract":"<p><p>This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). <This article has been retracted at the request of the Editors-in-Chief. A journal-wide investigation by Elsevier's Research Integrity & Publishing Ethics team identified violations of the journal's policies on conflict of interest related to the submission and review of this paper. Review of this submission was handled by Guest Editor Hassan Karimi-Maleh despite an extensive record of collaboration, including co-publication, with one of the paper co-authors (Fatemeh Karimi). Acceptance of the article was solely based upon the positive advice of reviewers who were closely linked to two of the authors (Karimi, Mehdi Baghayeri). This compromised the editorial process and breached the journal's policies. The authors disagree with this retraction and dispute the grounds for it.>.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143864"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to "Enhancement of lipid accumulation in microalga Desmodesmus sp. VV2: Response surface methodology and artificial neural network modeling for biodiesel production" [Chemosphere 293 (2022) 133477]. 关于 "Enhancement of lipid accumulation in microalga Desmodesmus sp:生物柴油生产的响应面方法和人工神经网络建模" [Chemosphere 293 (2022) 133477]。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-14 DOI: 10.1016/j.chemosphere.2024.143837
Elamathi Vimali, Arumugasamy Senthil Kumar, Nagamalai Sakthi Vignesh, Balasubramaniem Ashokkumar, Amarajothi Dhakshinamoorthy, Aswathy Udayan, Muthu Arumugam, Arivalagan Pugazhendhi, Perumal Varalakshmi
{"title":"Retraction notice to \"Enhancement of lipid accumulation in microalga Desmodesmus sp. VV2: Response surface methodology and artificial neural network modeling for biodiesel production\" [Chemosphere 293 (2022) 133477].","authors":"Elamathi Vimali, Arumugasamy Senthil Kumar, Nagamalai Sakthi Vignesh, Balasubramaniem Ashokkumar, Amarajothi Dhakshinamoorthy, Aswathy Udayan, Muthu Arumugam, Arivalagan Pugazhendhi, Perumal Varalakshmi","doi":"10.1016/j.chemosphere.2024.143837","DOIUrl":"10.1016/j.chemosphere.2024.143837","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143837"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to "Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production" [Chemosphere 290(2022) 133246]. 关于 "利用农业木质纤维素废弃物生产生物燃料和绿色柴油 "的撤稿通知 [Chemosphere 290(2022) 133246]。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-14 DOI: 10.1016/j.chemosphere.2024.143827
Chaitanya Kumar Reddy Pocha, Shir Reen Chia, Wen Yi Chia, Apurav Krishna Koyande, Saifuddin Nomanbhay, Kit Wayne Chew
{"title":"Retraction notice to \"Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production\" [Chemosphere 290(2022) 133246].","authors":"Chaitanya Kumar Reddy Pocha, Shir Reen Chia, Wen Yi Chia, Apurav Krishna Koyande, Saifuddin Nomanbhay, Kit Wayne Chew","doi":"10.1016/j.chemosphere.2024.143827","DOIUrl":"10.1016/j.chemosphere.2024.143827","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143827"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142831223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing PFAS in drinking water: Insights from the Czech Republic's risk-based monitoring approach. 评估饮用水中的PFAS:来自捷克共和国基于风险的监测方法的见解。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-26 DOI: 10.1016/j.chemosphere.2024.143969
Frantisek Kozisek, Darina Dvorakova, Filip Kotal, Hana Jeligova, Lenka Mayerova, Veronika Svobodova, Martina Jurikova, Veronika Gomersall, Jana Pulkrabova
{"title":"Assessing PFAS in drinking water: Insights from the Czech Republic's risk-based monitoring approach.","authors":"Frantisek Kozisek, Darina Dvorakova, Filip Kotal, Hana Jeligova, Lenka Mayerova, Veronika Svobodova, Martina Jurikova, Veronika Gomersall, Jana Pulkrabova","doi":"10.1016/j.chemosphere.2024.143969","DOIUrl":"10.1016/j.chemosphere.2024.143969","url":null,"abstract":"<p><p>This study investigates the presence of perfluoroalkyl substances (PFAS) in the drinking water supplies in the Czech Republic using a risk-based monitoring approach. Tap water samples (n = 27) from sources close to areas potentially contaminated with PFAS were analysed. A total of 28 PFAS were measured using ultra-performance liquid chromatography with tandem mass spectrometry after solid phase extraction. Total PFAS concentrations (∑PFAS) varied from undetectable to 90.8 ng/L, with perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA) and perfluorobutane sulfonic acid (PFBS) being the most abundant, detected in over 70% of samples. Risk-based monitoring in drinking water showed that commercial wells had higher PFAS levels compared to tap water, particularly C4-C9 perfluorocarboxylic acids (PFCAs), possibly due to proximity to industrial areas. However, the hypothesis that risk-based monitoring is more effective than random monitoring was not confirmed, possibly because specific sources did not produce the target PFAS or because of the wide range and less obvious sources of potential contamination. The study also assessed exposure risks and compliance with regulatory thresholds. Weekly intake estimates for adults and children indicated that regular consumption of most contaminated water sample would exceed the tolerable weekly intake. Compared to EU regulations, none of the tap water samples exceeded the 'Sum of PFAS' parametric value of 100 ng/L, though one sample approached this limit. In addition, surface water samples from the Jizera River (n = 21) showed a wider range of PFAS, with C7-C10 PFCAs, PFBS, and perfluorooctane sulfonic acid (PFOS) in every sample, with higher PFOS concentrations at a median of 2.56 ng/L. ∑PFAS concentrations increased downstream, rising from 1.08 ng/L near the spring to 26 ng/L downstream. This comprehensive analysis highlights the need for detailed/areal monitoring to also address hidden or non-obvious sources of PFAS contamination.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143969"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142857298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to "Pyrolysis: An effective technique for degradation of COVID-19 medical wastes" [Chemosphere 275 (2021) 130092]. 《热解:一种降解新型冠状病毒医疗废弃物的有效技术》撤回通知[Chemosphere 275(2021) 130092]。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI: 10.1016/j.chemosphere.2024.143824
Selvakumar Dharmaraj, Veeramuthu Ashokkumar, Rajesh Pandiyan, Heli Siti Halimatul Munawaroh, Kit Wayne Chew, Wei-Hsin Chen, Chawalit Ngamcharussrivichai
{"title":"Retraction notice to \"Pyrolysis: An effective technique for degradation of COVID-19 medical wastes\" [Chemosphere 275 (2021) 130092].","authors":"Selvakumar Dharmaraj, Veeramuthu Ashokkumar, Rajesh Pandiyan, Heli Siti Halimatul Munawaroh, Kit Wayne Chew, Wei-Hsin Chen, Chawalit Ngamcharussrivichai","doi":"10.1016/j.chemosphere.2024.143824","DOIUrl":"10.1016/j.chemosphere.2024.143824","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143824"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11885206/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation. 烷基化多环芳烃和取代菲的发育毒性:结构上的细微差别驱动不同的毒性和AHR活化。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-10 DOI: 10.1016/j.chemosphere.2024.143894
Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay
{"title":"Developmental toxicity of alkylated PAHs and substituted phenanthrenes: Structural nuances drive diverse toxicity and AHR activation.","authors":"Mackenzie L Morshead, Lisa Truong, Michael T Simonich, Jessica E Moran, Kim A Anderson, Robyn L Tanguay","doi":"10.1016/j.chemosphere.2024.143894","DOIUrl":"10.1016/j.chemosphere.2024.143894","url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs) are a diverse class of chemicals that occur in complex mixtures including parent and substituted PAHs. To understand the hazard posed by complex environmental PAH mixtures, we must first understand the structural drivers of activity and mode of action of individual PAHs. Understanding the toxicity of alkylated PAHs is important as they often occur in higher abundance in environmental matrices and can be more biologically active than their parent compounds. 104 alkylated PAHs were screened from 11 different parent compounds with emphasis on substituted phenanthrenes and their structurally dependent toxicity differences. Using a high-throughput early life stage zebrafish assay, embryos were exposed to concentrations between 0.1 and 100 μM and assessed for morphological and behavioral outcomes. The aryl hydrocarbon receptor (AHR) is often implicated in the toxicity of PAHs and the induction of cytochrome P4501A (cyp1a) is an excellent biomarker of Ahr activation. Embryos were evaluated for cyp1a induction using a fluorescence reporter line. Alkyl and polar phenanthrene derivatives were further assessed for spatial cyp1a expression and Ahr dependence of morphological effects. In the alkyl PAH screen 35 (33.7%) elicited a morphological or behavioral response and of those 23 (65%) also induced cyp1a. 31 (29.8%) of the chemicals only induced cyp1a. Toxicity varied substantially in response to substitution location, the amount of ring substitutions and alkyl chain length. Cyp1a induction varied by parent compound group and was a poor indicator of morphological or behavioral outcomes. Polar phenanthrenes were more biologically active than alkylated phenanthrene derivatives and their toxicity was not dependent upon the Ahr2, Ahr1a or Ahr1b when tested individually, despite cyp1a induction by 50% of polar phenanthrenes. Our results demonstrated that induction of cyp1a did not always correlate with PAH toxicity or Ahr dependence and that the type and location of phenanthrene substitution determined potency.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143894"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732715/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the environmental determinants of micropollutant contamination in streams using explainable machine learning and network analysis. 使用可解释的机器学习和网络分析评估溪流中微污染物污染的环境决定因素。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI: 10.1016/j.chemosphere.2024.144041
Min Jeong Ban, Dong Hoon Lee, Byung-Tae Lee, Joo-Hyon Kang
{"title":"Assessing the environmental determinants of micropollutant contamination in streams using explainable machine learning and network analysis.","authors":"Min Jeong Ban, Dong Hoon Lee, Byung-Tae Lee, Joo-Hyon Kang","doi":"10.1016/j.chemosphere.2024.144041","DOIUrl":"10.1016/j.chemosphere.2024.144041","url":null,"abstract":"<p><p>Even at trace concentrations, micropollutants, including pesticides and pharmaceuticals, pose considerable ecological risks, and the increasing presence of synthetic chemical substances in aquatic systems has emerged as a growing concern. Moreover, limited machine-learning (ML) approaches exist for analyzing environmental data, and the increasing complexity of ML models has made it challenging to understand predictor-outcome relationships. In particular, understanding complex interactions among multiple variables remains challenging. This study applies and integrates explainable ML techniques and network analysis to identify the sources of micropollutants in a large watershed and determine the factors affecting micropollutant levels. We assessed the performance of four ML algorithms-support vector machine, random forest, extreme gradient boosting (XGB), and autoencoder-XGB-in predicting micropollutant levels based on the spatial characteristics of the watershed. We applied the synthetic minority oversampling technique to address the data imbalance. The XGB model demonstrated superior predictive performance, particularly for high concentration levels, achieving an accuracy of 87%-99%. Shapley additive explanations (SHAP) analysis identified temperature and rainfall as significant factors. Moreover, agricultural activities contributed to pesticide pollution, whereas urban activities contributed to pharmaceutical contamination. The network analysis corroborated the SHAP findings and revealed event-specific contamination characteristics. This included distinct discharge pathways during a dry summer event and shared pathways during a wet winter event. This approach enhances an understanding of contamination sources and pathways and subsequently aids in developing control measures and making informed policy decisions to preserve water quality in mixed land-use areas.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144041"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction notice to "Investigation on the evolution of hydrothermal biochar"[Chemosphere 307 (2022) 135774]. 《热液生物炭演化研究》撤稿通知[化学通报307(2022)135774]。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-28 DOI: 10.1016/j.chemosphere.2024.143862
Ming Li, Yang Wang, Zhangfeng Shen, Mingshu Chi, Chen Lv, Chenyang Li, Li Bai, Hamdy Khamees Thabet, Salah M El-Bahy, Mohamed M Ibrahim, Lai Fatt Chuah, Pau Loke Show, Xiaolin Zhao
{"title":"Retraction notice to \"Investigation on the evolution of hydrothermal biochar\"[Chemosphere 307 (2022) 135774].","authors":"Ming Li, Yang Wang, Zhangfeng Shen, Mingshu Chi, Chen Lv, Chenyang Li, Li Bai, Hamdy Khamees Thabet, Salah M El-Bahy, Mohamed M Ibrahim, Lai Fatt Chuah, Pau Loke Show, Xiaolin Zhao","doi":"10.1016/j.chemosphere.2024.143862","DOIUrl":"10.1016/j.chemosphere.2024.143862","url":null,"abstract":"<p><p>This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).<This article has been retracted at the request of the Editors-in-Chief. A journal-wide investigation by Elsevier's Research Integrity & Publishing Ethics team identified violations of the journal's policies on authorship and conflict of interest related to the submission and review of this paper. Multiple authorship changes were made during the revision of this paper; two authors were removed and the authors Hamdy Khamees Thabet, Salah M. El-Bahy, Mohamed M. Ibrahim were added to the revised paper without validation or authorisation. In addition, review of this submission was handled by Guest Editor Kuan Shiong Khoo despite an extensive record of collaboration, including co-publication, with one of the paper co-authors (Pau Loke Show). This compromised the editorial process and breached the journal's policies. The authors disagree with this retraction and dispute the grounds for it.>.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143862"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and vertical distribution of per- and polyfluoroalkyl substances (PFASs) in the water columns of the regional seas of South Korea. 韩国区域海域水柱中全氟烷基和多氟烷基物质的空间和垂直分布。
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-31 DOI: 10.1016/j.chemosphere.2024.144042
Sunmi Yang, Jiyun Gwak, Mungi Kim, Jihyun Cha, Youngnam Kim, Yeonjung Lee, Hyo-Bang Moon, Seongjin Hong
{"title":"Spatial and vertical distribution of per- and polyfluoroalkyl substances (PFASs) in the water columns of the regional seas of South Korea.","authors":"Sunmi Yang, Jiyun Gwak, Mungi Kim, Jihyun Cha, Youngnam Kim, Yeonjung Lee, Hyo-Bang Moon, Seongjin Hong","doi":"10.1016/j.chemosphere.2024.144042","DOIUrl":"10.1016/j.chemosphere.2024.144042","url":null,"abstract":"<p><p>This study focused on analyzing the spatial and vertical distributions of 28 per- and polyfluoroalkyl substances (PFASs), which comprised five precursors and three alternatives, in the water columns of the regional seas surrounding South Korea, such as the Yellow Sea (YS, Y1-Y10), East China Sea (ECS, EC1-EC6), South Sea (SS, S1-S5), and East Sea (ES, E1-E7). The concentrations of these PFASs detected in 204 seawater samples varied from below the limit of detection (<LOD) to 17 ng L<sup>-1</sup> in the YS, 0.26-17 ng L<sup>-1</sup> in the ECS, 0.08-3.4 ng L<sup>-1</sup> in the SS, and <LOD to 1.4 ng L<sup>-1</sup> in the ES, with perfluorooctanoic acid being identified as the most abundant compound. Principal component analysis grouped water masses and regions based on PFASs concentrations and compositions, enabling the identification of PFASs sources and their fate. PFASs are mainly derived from land and are transported via ocean currents, where their compositions tend to remain conservative. PFASs entering the YS are likely conveyed to the ES through ECS and SS, following the northward movement of the Taiwan Warm Current and Kuroshio Current. The ECS serves as a mixing zone for PFASs from various sources. This study provides valuable baseline data for understanding PFASs transport and the characteristics of water masses in the regional seas around South Korea.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"144042"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142904405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to "Resource recovery from legacy waste dumpsites in India: A path towards sustainable waste management" [Chemosphere 365 (2024) /143337]. 印度遗留废物倾倒场的资源回收:可持续废物管理之路"[Chemosphere 365 (2024) /143337].
Chemosphere Pub Date : 2025-02-01 Epub Date: 2024-12-12 DOI: 10.1016/j.chemosphere.2024.143909
Vivek Ojha, Apurva Sharma, Ved Prakash Ranjan, Rahul Rautela, Aachal Dhawral, Sunil Kumar
{"title":"Corrigendum to \"Resource recovery from legacy waste dumpsites in India: A path towards sustainable waste management\" [Chemosphere 365 (2024) /143337].","authors":"Vivek Ojha, Apurva Sharma, Ved Prakash Ranjan, Rahul Rautela, Aachal Dhawral, Sunil Kumar","doi":"10.1016/j.chemosphere.2024.143909","DOIUrl":"10.1016/j.chemosphere.2024.143909","url":null,"abstract":"","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":" ","pages":"143909"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142819989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信