{"title":"Soy sauce-like seasoning enhances the growth of <i>Agathobacter rectalis</i> and the production of butyrate, propionate, and lactate.","authors":"Kanako Hayashi, Riichiro Uchida, Taro Horiba, Tomohiro Kawaguchi, Keiko Gomi, Yoshiyuki Goto","doi":"10.12938/bmfh.2023-103","DOIUrl":"10.12938/bmfh.2023-103","url":null,"abstract":"<p><p>The short-chain fatty acids responsible for gut homeostasis are volatile fatty acids produced by commensal bacteria in the gut as fermentation products from undigested food components. Among the short-chain fatty acids, butyrate is important for maintaining intestinal tract anaerobic conditions, promoting epithelial barrier functions, and inducing regulatory T cells that suppress inflammatory bowel disease and allergic diarrhea. However, the type of food-derived molecular components and mechanisms by which they regulate the growth and butyrate production of butyrate-producing bacteria are not clearly understood. <i>Agathobacter rectalis</i> is a butyrate-producing bacterium highly colonized in the gut of the Japanese population. In this study, we investigated the effects on <i>A. rectalis</i> of a soy sauce-like seasoning made by brewing with a low salt concentration. The soy sauce-like seasoning promoted the growth of <i>A. rectalis</i> 2.6-fold. An ethanol precipitate prepared from the soy sauce-like seasoning was critical for promoting the growth of <i>A. rectalis</i> and the production of butyrate, propionate, and lactate. Fourier transform infrared spectroscopy (FT-IR) analysis suggested that polysaccharides were active ingredients in the ethanol precipitate of the soy sauce-like seasoning. Inulin, a representative prebiotic with effects against butyrate-producing bacteria, had a limited effect on the growth of <i>A. rectalis</i> compared with the soy sauce-like seasoning. Our results indicate that polysaccharides in a soy sauce-like seasoning contributed to the growth of <i>A. rectalis</i> and enhanced production of butyrate, propionate, and lactate.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"275-281"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220332/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shunsaku Sugiura, Mika Ikeda, Yuichi Nakamura, Riko Mishima, Mika Morishita, Jiro Nakayama
{"title":"Impact of vegetables on the microbiota of the rice bran pickling bed Nukadoko.","authors":"Shunsaku Sugiura, Mika Ikeda, Yuichi Nakamura, Riko Mishima, Mika Morishita, Jiro Nakayama","doi":"10.12938/bmfh.2023-104","DOIUrl":"10.12938/bmfh.2023-104","url":null,"abstract":"<p><p>Nukadoko, a fermented rice bran bed for pickling vegetables called nukazuke, has a complex microbiota. Within it, deep interactions between the microbiota of the pickled vegetables and nukadoko characterize and control the qualities of both products. To address this notion, we monitored the changes in the microbiota of nukadoko and nukazuke while pickling different vegetables. Raw or roasted rice bran was mixed with salted water and fermented at 24°C for 40 days, following which different species of vegetable, <i>Cucumis sativus</i> var. <i>sativus</i>, <i>Brassica oleracea</i> var. <i>capitata,</i> or <i>Raphanus sativus</i> var. <i>hortensis,</i> were pickled. The microbial composition of the washing solution of fresh vegetables, as well as that of the nukadoko and nukazuke for each vegetable, was analyzed by amplicon sequencing of 16S rRNA genes. Although the microbiota of nukadoko varied depending on the species of pickled vegetables, no transcolonization of any species of bacteria from fresh vegetables to nukadoko was observed. However, some lactic acid bacterium (LAB) species eventually dominated the microbiota of both nukazuke and matured nukadoko, although they were not detected in either the fresh vegetables or rice bran. Particularly, <i>Lactiplantibacillus plantarum</i> was dominant among all pairs of pickled vegetables and matured nukadoko, whereas the transcolonization of some other LAB species was observed in a pickled vegetable-specific manner. <i>Staphylococcus xylosus</i> was observed to some extent in each nukadoko, yet it was not detected in any nukazuke. Overall, a LAB-dominant microbiota was established in both nukadoko and nukazuke in an underlying process that was different but partly common among vegetables.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 4","pages":"359-366"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia Molodozhnikova, Anna Berestova, Iza Berechikidze, Dariya Shorina, Olga Morugina
{"title":"Changes in the tissue elements of the gastric mucosa interacting with different strains of <i>Helicobacter pylori</i>, taking into consideration the patient's genotype.","authors":"Natalia Molodozhnikova, Anna Berestova, Iza Berechikidze, Dariya Shorina, Olga Morugina","doi":"10.12938/bmfh.2023-070","DOIUrl":"10.12938/bmfh.2023-070","url":null,"abstract":"<p><p>The present study aimed to investigate the peculiarities of adaptation of tissue elements of the gastric mucosa during interaction with <i>Helicobacter pylori</i>, as determined by genetic characteristics of the bacterium and the host. Venous blood and biopsy samples of the mucosa of the antrum and body of the stomach from young patients (18 to 25 years old) were examined. The condition of the gastric mucosa was assessed using stained histological preparations. Venous blood was collected from the patients to ascertain the polymorphisms of the IL-lß and IL-IRN genes. The most pronounced changes were observed in the parameters of reparative regeneration of epithelial differentiation during colonization of the gastric mucosa by <i>H. pylori</i> strains carrying the CagA(+) and BabA2(+) genes. These included an increase in proliferation and apoptosis rates and alterations in epithelial differentiation markers characterized by elevated production of Shh and MUC5AC, as well as a reduction in the production of the protective mucin MUC6 by isthmus gland cells. The presence of the vacAs1 and vacAs2 genes of <i>H. pylori</i> results in a high level of apoptosis in epithelial cells without accelerating proliferation. It was found that after eradication, patients with preserved cellular infiltrates in their gastric mucosa plates were carriers of mainly the IL-1ß*T/IL-1RN*2R haplotypes after 12 months.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"213-221"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aki Okano, Sachi Tanaka, Kazuha Yamada, Naoto Hashimoto, Jun Watanabe
{"title":"Mechanisms of interleukin-10 induction in murine spleen and RAW264 cells by <i>Latilactobacillus curvatus</i> K4G4 isolated from fermented <i>Brassica rapa</i> L.","authors":"Aki Okano, Sachi Tanaka, Kazuha Yamada, Naoto Hashimoto, Jun Watanabe","doi":"10.12938/bmfh.2023-073","DOIUrl":"10.12938/bmfh.2023-073","url":null,"abstract":"<p><p>Lactic acid bacteria (LAB) are commonly used in fermented foods, and some LAB modulate the immune response. We aimed to investigate the mechanism by which LAB isolates from fermented <i>Brassica rapa</i> L. induce the production of anti-inflammatory interleukin (IL)-10 by the murine spleen and RAW264 cells. Spleen cells from BALB/c mice or the mouse macrophage cell line RAW264 were cultured with heat-killed LAB isolated from fermented <i>B. rapa</i> L., and the IL-10 level in the supernatant was measured. <i>Latilactobacillus curvatus</i> K4G4 provided the most potent IL-10 induction among 13 isolates. Cell wall components of K4G4 failed to induce IL-10, while treatment of the bacteria with RNase A under a high salt concentration altered K4G4 induction of IL-10 by spleen cells. In general, a low salt concentration diminished the IL-10 induction by all strains, including K4G4. In addition, chloroquine pretreatment and knock down of toll-like receptor 7 through small interfering RNA suppressed K4G4 induction of IL-10 production by RAW264 cells. Our results suggest that single-stranded RNA from K4G4 is involved, via endosomal toll-like receptor 7, in the induction of IL-10 production by macrophages. K4G4 is a promising candidate probiotic strain that modulates the immune response by inducing IL-10 from macrophages.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"227-233"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220328/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silk-derived sericin/fibroin mixture drink fermented with plant-derived <i>Lactococcus lactis</i> BM32-1 improves constipation and related microbiota: a randomized, double-blind, and placebo-controlled clinical trial.","authors":"Masafumi Noda, Narandalai Danshiitsoodol, Keishi Kanno, Masanori Sugiyama","doi":"10.12938/bmfh.2023-102","DOIUrl":"10.12938/bmfh.2023-102","url":null,"abstract":"<p><p>We previously showed through clinical trials that one plant-derived lactic acid bacteria (LAB) can improve constipation. We preliminarily found that the plant-derived LAB <i>Lactococcus lactis</i> BM32-1 can grow in a mixture of sericin and fibroin, which are extracted from silk and have been reported to help promote health. Thus, in the present study, we evaluated the favorable effect of a sericin/fibroin mixture (S/F-M), which was extracted from silk prepared from cocoons reared in an aseptic rearing system using an artificial diet, fermented with the BM32-1 strain through a clinical trial. The trial was conducted at Hiroshima University from June to October 2022 as a double-blind, placebo-controlled, randomized parallel-group comparative study with 50 eligible subjects (aged 23-71) who had an average defecation frequency of less than 5 times per week. The subjects were instructed to drink 100 mL of fermented S/F-M or placebo every day. After the 12 weeks of the clinical trial period, the average defecation frequency increased significantly-1.4 times higher than that at baseline in the test group-as compared with the placebo group. Furthermore, the fecal microbiota was also compared before and after treatment, revealing that intake of the fermented S/F-M significantly multiplied the relative abundance of the genera <i>Enterococcus</i> and <i>Clostridium</i>, which have been reported to contribute to the amelioration of constipation by improving the gut microbiota and producing butyric acid, respectively. In conclusion, the S/F-M fermented using the BM32-1 strain improves defecation frequency through alteration of the gut microbiota.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"282-292"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220338/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hitoshi Shimbo, Ayumi Fukagawa, Oji Nakamura, Shiho Murakami, Yutaka Miura, Makoto Hattori, Dalene DE Beer, Elizabeth Joubert, Tadashi Yoshida
{"title":"Anti-allergic effect of <i>Cyclopia</i> (honeybush) extracts via anti-degranulation activity in a murine allergy model for inhaled antigen.","authors":"Hitoshi Shimbo, Ayumi Fukagawa, Oji Nakamura, Shiho Murakami, Yutaka Miura, Makoto Hattori, Dalene DE Beer, Elizabeth Joubert, Tadashi Yoshida","doi":"10.12938/bmfh.2023-105","DOIUrl":"10.12938/bmfh.2023-105","url":null,"abstract":"<p><p>The anti-allergic effects of extracts prepared from two species of honeybush, <i>Cyclopia genistoides</i> and <i>Cyclopia subternata</i>, were demonstrated <i>in vivo</i> in a murine allergy model for inhaled antigen induced with ovalbumin (OVA) inhalation to mimic pollen allergy. Intake of the extracts increased the production of OVA-specific immunoglobulin (Ig) E (IgE), IgG1, and IgG2a antibodies in serum and significantly suppressed anaphylactic reaction-induced body temperature decline. Moreover, the extracts significantly inhibited antigen-antibody-induced degranulation in RBL-2H3 cells. They also inhibited body temperature decline when the allergic mice were given them after antigen sensitization, indicating that anti-degranulation activity is the major mechanism underlying the anti-allergic effect of <i>Cyclopia</i> extracts. Despite their qualitative and quantitative differences in phenolic composition, the two extracts exhibited similar effects, suggesting that several active compounds might be involved in the activity. Therefore, oral administration of either <i>Cyclopia</i> extract potentially exerts a systemic anti-allergic effect, supporting the increased consumption of honeybush tea for general wellness and improved quality of life.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"43 3","pages":"241-249"},"PeriodicalIF":2.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141536350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of microRNAs in the crosstalk between the gut microbiota and intestinal immune system.","authors":"Kei Sonoyama, Fumina Ohsaka","doi":"10.12938/bmfh.2023-027","DOIUrl":"10.12938/bmfh.2023-027","url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are small non-coding RNA species involved in diverse physiological processes, including immunity. Accumulating evidence suggests that miRNA-induced gene silencing plays a significant role in the regulation of the intestinal immune system by the gut commensal microbiota. This review aims to provide an overview of the intestinal miRNA-mediated crosstalk between the gut microbiota and the host intestinal immune system. First, we describe the role of miRNAs in regulating the intestinal immune system. Then we describe the effect of the gut microbiota on intestinal miRNA expression. Subsequently, we describe the role of miRNAs in the modulation of the intestinal immune system by the gut microbiota. Finally, we describe the effect of host miRNAs on the gut microbiota. Although the entire picture of this complex crosstalk remains unclear, efforts to unravel it will contribute significantly to developing new strategies for preventing and treating intestinal immune disorders such as inflammatory bowel disease.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"222-228"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/b2/bmfh-42-222.PMC10542430.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41165526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbial ecology between <i>Clostridioides difficile</i> and gut microbiota.","authors":"Shigeru Kamiya","doi":"10.12938/bmfh.2023-033","DOIUrl":"10.12938/bmfh.2023-033","url":null,"abstract":"<p><p><i>Clostridioides difficile</i> colonizes a polymicrobial environment in the intestine and is a causative agent for antibiotic-associated diarrhea (AAD) and pseudomembranous colitis (PMC). The most important virulence factors of <i>C. difficile</i> are bacterial toxins, and three toxins (toxin A, toxin B, and binary toxin) are produced by toxigenic strains. Other virulence factors include spores, flagella, capsules, biofilms, hydrolytic enzymes and adhesins. <i>C. difficile</i> infection (CDI) is specifically diagnosed by anaerobic culture and toxin detection by either nucleic acid amplification test (NAAT) or enzyme-linked immunosorbent assay (ELISA). For treatment of CDI, metronidazole, vancomycin and fidaxomicin are used based on the severity of CDI. Mutual interaction between <i>C. difficile</i> and gut microbiota is associated with pathogenesis of CDI, and decreased microbial diversity with altered gut microbiome was detected in CDI patients. Restoration of certain gut microbiota is considered to be potentially effective for the prevention and treatment of CDI, and an ideal goal for CDI patients is restoration of the gut microbiota to a healthy state. Fecal microbiota transplantation (FMT) is a highly successful method of microbiome restoration and has been reported to be effective for the prevention of recurrent CDI. In addition, approaches to restoring the gut microbiota by using probioitcs and live biotherapeutic products (LBPs) are currently being studied to examine the effect on CDI. Further microbial ecological research on <i>C. difficile</i> and gut microbiota could lead to a better understanding of the pathogenesis and treatment of CDI.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"229-235"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/21/db/bmfh-42-229.PMC10542429.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41160460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of D-amino acid in Japanese post-fermented tea, Ishizuchi-kurocha.","authors":"Masanori Horie, Yoshihiro Ohmiya, Taketo Ohmori","doi":"10.12938/bmfh.2023-005","DOIUrl":"10.12938/bmfh.2023-005","url":null,"abstract":"<p><p>The D-amino acid content of Ishizuchi-kurocha, a post-fermented tea produced in Ehime, Japan, was measured. Ishizuchi-kurocha mainly contains D-glutamic acid and D-alanine, but it also contains a small amount of D-aspartic acid. Two types of lactic acid bacteria, <i>Lactiplantibacillus plantarum</i> and <i>Levilactobacillus brevis</i>, are the main species involved in lactic acid fermentation during the tea fermentation process. Therefore, the D-amino acid-producing abilities of strains of these two species isolated from Ishizuchi-kurocha were examined. Specifically, the production of D-aspartic acid, D-alanine, and D-glutamic acid by <i>L. brevis</i> and <i>L. plantarum</i> strains was observed. The amount of D-aspartic acid produced by <i>L. plantarum</i> was low. D-glutamine was detected in culture supernatant but not in bacterial cells. D-arginine was detected in bacterial cells of the <i>L. plantarum</i> strains but not in the culture supernatant. Both the <i>L. brevis</i> and <i>L. plantarum</i> strains possessed at least three kinds of putative racemase genes: alanine racemase, glutamate racemase, and aspartate racemase. However, their expression and enzyme activity remain unknown. <i>L. plantarum</i> and <i>L. brevis</i> could play an important role in the production of D-amino acids in Ishizuchi-kurocha. In fact, Ishizuchi-kurocha is expected to possess the effective physiological activities of D-amino acids.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"254-263"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/37/ab/bmfh-42-254.PMC10542427.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianming Zhang, Debin Shu, Xu Cheng, Tian Tian, Kan Xiao, Dezhi Zhang, Jing Yang
{"title":"Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.","authors":"Jianming Zhang, Debin Shu, Xu Cheng, Tian Tian, Kan Xiao, Dezhi Zhang, Jing Yang","doi":"10.12938/bmfh.2022-089","DOIUrl":"https://doi.org/10.12938/bmfh.2022-089","url":null,"abstract":"<p><p>Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary <i>Poria cocos</i> and <i>Astragalus</i> polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, <i>P. cocos</i> polysaccharide<i>-</i>added (200 mg/kg), and <i>Astragalus</i> polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary <i>Astragalus</i> polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the <i>P. cocos</i> and <i>Astragalus</i> polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the <i>Astragalus</i> polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary <i>Astragalus</i> polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the <i>P. cocos</i> polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of <i>P. cocos</i> and <i>Astragalus</i> polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"243-253"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/0f/bmfh-42-243.PMC10542428.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41171090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}