植物多糖(茯苓和黄芪多糖)对达氏鲟免疫反应和肠道微生物群的影响。

IF 2.5 Q3 MICROBIOLOGY
Bioscience of microbiota, food and health Pub Date : 2023-01-01 Epub Date: 2023-06-13 DOI:10.12938/bmfh.2022-089
Jianming Zhang, Debin Shu, Xu Cheng, Tian Tian, Kan Xiao, Dezhi Zhang, Jing Yang
{"title":"植物多糖(茯苓和黄芪多糖)对达氏鲟免疫反应和肠道微生物群的影响。","authors":"Jianming Zhang,&nbsp;Debin Shu,&nbsp;Xu Cheng,&nbsp;Tian Tian,&nbsp;Kan Xiao,&nbsp;Dezhi Zhang,&nbsp;Jing Yang","doi":"10.12938/bmfh.2022-089","DOIUrl":null,"url":null,"abstract":"<p><p>Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary <i>Poria cocos</i> and <i>Astragalus</i> polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, <i>P. cocos</i> polysaccharide<i>-</i>added (200 mg/kg), and <i>Astragalus</i> polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary <i>Astragalus</i> polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the <i>P. cocos</i> and <i>Astragalus</i> polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the <i>Astragalus</i> polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary <i>Astragalus</i> polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the <i>P. cocos</i> polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of <i>P. cocos</i> and <i>Astragalus</i> polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.</p>","PeriodicalId":93908,"journal":{"name":"Bioscience of microbiota, food and health","volume":"42 4","pages":"243-253"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/0f/bmfh-42-243.PMC10542428.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.\",\"authors\":\"Jianming Zhang,&nbsp;Debin Shu,&nbsp;Xu Cheng,&nbsp;Tian Tian,&nbsp;Kan Xiao,&nbsp;Dezhi Zhang,&nbsp;Jing Yang\",\"doi\":\"10.12938/bmfh.2022-089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary <i>Poria cocos</i> and <i>Astragalus</i> polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, <i>P. cocos</i> polysaccharide<i>-</i>added (200 mg/kg), and <i>Astragalus</i> polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary <i>Astragalus</i> polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the <i>P. cocos</i> and <i>Astragalus</i> polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the <i>Astragalus</i> polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary <i>Astragalus</i> polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the <i>P. cocos</i> polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of <i>P. cocos</i> and <i>Astragalus</i> polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.</p>\",\"PeriodicalId\":93908,\"journal\":{\"name\":\"Bioscience of microbiota, food and health\",\"volume\":\"42 4\",\"pages\":\"243-253\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/6a/0f/bmfh-42-243.PMC10542428.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of microbiota, food and health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2022-089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of microbiota, food and health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/bmfh.2022-089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

寻找能够提高生长性能和宿主免疫力的无毒无害的饲料成分一直是人工养殖达氏鲟保护区关注的焦点。本研究首次探讨了日粮茯苓和黄芪多糖对达氏鲟抗氧化状态、免疫相关基因表达以及肠道细菌群落组成和推定功能的影响。本研究将Dabry’s鲟鱼随机分为3组,分别饲喂添加了椰子多糖(200 mg/kg)和添加的黄芪多糖(200 mg/kg)食物,持续14天。结果表明,黄芪多糖能提高达氏鲟的最终体重。与正常养殖个体相比,含有茯苓和黄芪多糖的日粮上调了超氧化物歧化酶、溶菌酶、过氧化氢酶和谷胱甘肽过氧化物酶的活性,同时降低了丙二醛的水平。此外,黄芪多糖组具有较高的两种炎性细胞因子,肿瘤坏死因子α和免疫球蛋白的基因表达 M、 与对照组相比。肠道微生物群分析表明,黄芪多糖提高了达氏鲟主要肠道微生物群的丰富度和多样性,而茯苓多糖组的结构与对照组明显不同。研究结果初步表明,日粮中添加茯苓和黄芪多糖有助于达氏鲟更好的生长发育和炎症反应,为植物多糖添加剂在鲟鱼人工养殖中的应用提供了基础指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.

Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.

Effect of plant polysaccharides (<i>Poria cocos</i> and <i>Astragalus</i> polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.

Effect of plant polysaccharides (Poria cocos and Astragalus polysaccharides) on immune responses and intestinal microbiota of Dabry's sturgeons.

Searching for non-toxic and harmless feed ingredients that can improve growth performance and host immunity has always been the focus of attention in the protected areas for artificially bred Dabry's sturgeons. The present study explored the effect of dietary Poria cocos and Astragalus polysaccharides on the antioxidant status, expression of immune related genes, and composition and putative functions of gut bacterial communities in Dabry's sturgeons for the first time. In this study, Dabry's sturgeons were randomly divided into 3 groups and fed diets of normal, P. cocos polysaccharide-added (200 mg/kg), and Astragalus polysaccharide-added (200 mg/kg) food for 14 days. The results indicated that dietary Astragalus polysaccharide can increase the final body weight of Dabry's sturgeon. Compared with normal breeding individuals, feeding diets containing the P. cocos and Astragalus polysaccharides up-regulated the activity of superoxide dismutase, lysozyme, catalase, and glutathione peroxidase while also decreasing the levels of malondialdehyde. In addition, the Astragalus polysaccharide group had higher gene expression of two inflammatory cytokines, tumor necrosis factor alpha and immunoglobulin M, than the control group. Analysis of intestinal microbiota revealed that the dietary Astragalus polysaccharide improved the richness and diversity of major gut microbiota in Dabry's sturgeons, while the structure in the P. cocos polysaccharide group was clearly distinguished from that of the control group. Our results preliminarily indicated that dietary supplementation of P. cocos and Astragalus polysaccharides may contribute to better performance in growth, development, and inflammatory response for Dabry's sturgeons, and they provide basic guidance for plant polysaccharide additives in artificial breeding of sturgeons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信