Autophagy最新文献

筛选
英文 中文
AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry. AP3B1 有助于 PDIA3/ERP57 发挥调节狂犬病病毒糖蛋白选择性降解和病毒进入的功能。
Autophagy Pub Date : 2024-12-01 Epub Date: 2024-08-17 DOI: 10.1080/15548627.2024.2390814
Yuelan Zhang, Xinyi Zhang, Xue Yang, Linyue Lv, Qinyang Wang, Shaowei Zeng, Zhuyou Zhang, Martin Dorf, Shitao Li, Ling Zhao, Bishi Fu
{"title":"AP3B1 facilitates PDIA3/ERP57 function to regulate rabies virus glycoprotein selective degradation and viral entry.","authors":"Yuelan Zhang, Xinyi Zhang, Xue Yang, Linyue Lv, Qinyang Wang, Shaowei Zeng, Zhuyou Zhang, Martin Dorf, Shitao Li, Ling Zhao, Bishi Fu","doi":"10.1080/15548627.2024.2390814","DOIUrl":"10.1080/15548627.2024.2390814","url":null,"abstract":"<p><p>Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.<b>Abbreviation:</b> aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H<sup>+</sup> transporting V1 subunit A; ATP6V1H: ATPase H<sup>+</sup> transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: <i>drosophila melanogaster</i> endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: <i>homo sapiens</i> protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: <i>mus musculus</i> protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: S<i>accharomyces cerevisiae s288c</i> protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"2785-2803"},"PeriodicalIF":0.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
S-acylation of PNPLA2/ATGL: a necessity for triacylglycerol lipolysis and lipophagy in hepatocytes.
Autophagy Pub Date : 2024-11-29 DOI: 10.1080/15548627.2024.2435873
Zheng Yuping, Dante Neculai, Gregory D Fairm
{"title":"<i>S-</i>acylation of PNPLA2/ATGL: a necessity for triacylglycerol lipolysis and lipophagy in hepatocytes.","authors":"Zheng Yuping, Dante Neculai, Gregory D Fairm","doi":"10.1080/15548627.2024.2435873","DOIUrl":"https://doi.org/10.1080/15548627.2024.2435873","url":null,"abstract":"<p><p>The intricate balance between lipolysis and lipophagy in cellular lipid homeostasis has fascinated researchers for years. A growing body of evidence highlights the critical roles of PNPLA2/ATGL (patatin like phospholipase domain containing 2) in both lipolysis and lipophagy. Here, we discuss our recent study, which revealed that PNPLA2 must be S-acylated on Cys15 for its robust catalytic activity. Additionally, we discuss the results highlighting that genetic inactivation of the <i>ZDHHC11</i> acyltransferase or expression of S-acylation deficient PNPLA2 mutants impairs not only lipolysis but also lipophagy. This finding suggests that the mere presence of PNPLA2 with its LC3-interacting region (LIR) motifs is insufficient to drive lipophagy without triacylglycerol breakdown. Our study provides insights into yet another mode of regulation of PNPLA2 activity with implications for understanding lipid droplet catabolism, lipophagy, and cellular energy homeostasis.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNF144A inhibits autophagy by targeting BECN1 for degradation during L. monocytogenes infection.
Autophagy Pub Date : 2024-11-28 DOI: 10.1080/15548627.2024.2429380
Bo Yang, Mengyang Shen, Chen Lu, Yi Wang, Xin Zhao, Qunmei Zhang, Xiao Qin, Jinyong Pei, Hui Wang, Jie Wang
{"title":"RNF144A inhibits autophagy by targeting BECN1 for degradation during <i>L. monocytogenes</i> infection.","authors":"Bo Yang, Mengyang Shen, Chen Lu, Yi Wang, Xin Zhao, Qunmei Zhang, Xiao Qin, Jinyong Pei, Hui Wang, Jie Wang","doi":"10.1080/15548627.2024.2429380","DOIUrl":"https://doi.org/10.1080/15548627.2024.2429380","url":null,"abstract":"<p><p><i>Listeria monocytogenes (L. monocytogenes, Lm)</i> is widely used in the laboratory as an infection model for the research on pathogenesis and host defense against gram-positive intracellular bacteria. Macroautophagy (called simply \"autophagy\" hereafter), is important in the host defense against pathogens, such as bacteria, viruses, and parasites. BECN1 plays a pivotal role in the initiation of autophagy and accumulating evidence indicates that post-translational modifications of BECN1 provide multiple strategies for autophagy regulation. In this study, we demonstrated that the RING1-IBR-RING2 (RBR) family member RNF144A (ring finger protein 144A), which was induced by <i>Lm</i> infection, promoted <i>Lm</i> infection in an autophagy-dependent but STING1-independent pattern. <i>rnf144a</i> deficiency in mice protected mice from <i>Lm</i> infection with inhibited innate immune responses. Interestingly, RNF144A decreased <i>Lm</i>-induced autophagosome accumulation. Mechanistic investigation indicated that RNF144A interacted with BECN1 and promoted its K48-linked ubiquitination, leading to the subsequent proteasome-dependent degradation of BECN1 and reduced autophagosome accumulation. Further study demonstrated that RNF144A promoted the ubiquitination of BECN1 at K117 and K427, and these two ubiquitination sites were essential to the role of BECN1 in autophagy and Lm infection. Thus, our findings suggested a new regulator in intracellular bacterial infection and autophagy, which may contribute to our understanding of host defense against intracellular bacterial infection via autophagy.<b>Abbreviations</b>: ATG3: autophagy related 3; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG10: autophagy related 10; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; Baf A<sub>1</sub>: bafilomycin A<sub>1</sub>; BECN1: beclin 1; BMDC: bone marrow-derived dendritic cell; BMDM: bone marrow-derived macrophage; CFUs: colony-forming units; CHX: cycloheximide; CQ: chloroquine; CXCL10/IP-10: C-X-C motif chemokine ligand 10; EBSS: Earle's balanced salt solution; ELISA: enzyme-linked immunosorbent assay; IFIT1/ISG56: interferon induced protein with tetratricopeptide repeats 1; IFNB/IFN-β: interferon beta; IL6: interleukin 6; IRF3, interferon regulatory factor 3; Lm: <i>L. monocytogenes</i>; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MOI: multiplicity of infection; PLA: proximity ligation assay; PMA: phorbol myristate acetate; PMA-THP1, PMA-differentiated THP1; PMs: peritoneal macrophages; PTMs: posttranslational modifications; RBR: RING1-IBR-RING2; RNF144A: ring finger protein 144A; STING1, stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; TNF/TNF-α: tumor necrosis factor.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UBAC2 serves as a reticulophagy receptor to suppress inflammatory responses. UBAC2 是抑制炎症反应的网状吞噬受体。
Autophagy Pub Date : 2024-11-27 DOI: 10.1080/15548627.2024.2431341
Xing He, Shouheng Jin
{"title":"UBAC2 serves as a reticulophagy receptor to suppress inflammatory responses.","authors":"Xing He, Shouheng Jin","doi":"10.1080/15548627.2024.2431341","DOIUrl":"10.1080/15548627.2024.2431341","url":null,"abstract":"<p><p>Reticulophagy selectively degrades fragments of the endoplasmic reticulum (ER) through macroautophagy/autophagy to maintain ER homeostasis. The deficiency of reticulophagy results in the unfolded protein response (UPR), which is a crucial clue to the pathogenesis of inflammatory diseases. However, the detailed mechanism underlying the cross-regulation between reticulophagy and inflammatory diseases remains largely unclear. Recently, we have revealed that UBAC2 (UBA domain containing 2) is essential for controlling ER homeostasis as a novel reticulophagy receptor. MARK2 catalyzes the phosphorylation of UBAC2 at serine (S) 223, hence facilitating the progression of reticulophagy and inhibiting ER stress-induced inflammatory responses.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ER quality control through reticulophagy and protein secretion. 通过网状吞噬和蛋白质分泌控制 ER 质量。
Autophagy Pub Date : 2024-11-27 DOI: 10.1080/15548627.2024.2431340
Cathena Meiling Li, Yong-Keun Jung
{"title":"ER quality control through reticulophagy and protein secretion.","authors":"Cathena Meiling Li, Yong-Keun Jung","doi":"10.1080/15548627.2024.2431340","DOIUrl":"https://doi.org/10.1080/15548627.2024.2431340","url":null,"abstract":"<p><p>The endoplasmic reticulum (ER) is the site of multiple cellular events and maintaining its quality control is thus crucial for cell homeostasis. Through a morphology-based gain-of-function screen, we identified the cytosolic protein FKBPL as a regulator of reticulophagy. With multiple protein-binding domains, FKBPL binds to the ER-resident CKAP4, acting as a bridge that connects the ER to the phagophore and facilitating the delivery of ER contents for lysosomal degradation. The FKBPL-CKAP4 axis is essential for both basal and stress-induced reticulophagy. Loss of the FKBPL-CKAP4 interaction attenuates reticulophagy and enhances protein secretion via microvesicle shedding. Here, we propose a dual role for the FKBPL-CKAP4 axis in regulating reticulophagy and protein secretion.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy-dependent ferroptosis mediates multiple sclerosis. 自噬依赖性铁蛋白沉积介导多发性硬化症。
Autophagy Pub Date : 2024-11-22 DOI: 10.1080/15548627.2024.2419112
Daolin Tang, Rui Kang, Daniel J Klionsky
{"title":"Autophagy-dependent ferroptosis mediates multiple sclerosis.","authors":"Daolin Tang, Rui Kang, Daniel J Klionsky","doi":"10.1080/15548627.2024.2419112","DOIUrl":"https://doi.org/10.1080/15548627.2024.2419112","url":null,"abstract":"<p><p>A recent paper published in <i>Cell</i> by Woo et al. reported that autophagy-dependent ferroptosis mediated by STING1 is involved in neuronal death associated with multiple sclerosis (MS). This research broadens our understanding of the pathogenesis of MS and opens new avenues for therapeutic interventions.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation. 禽类TRIM13通过靶向MAVS进行自噬降解来削弱抗病毒先天免疫力。
Autophagy Pub Date : 2024-11-19 DOI: 10.1080/15548627.2024.2426114
Peng Zhou, Qingxiang Zhang, Yueshan Yang, Dong Chen, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo
{"title":"Avian TRIM13 attenuates antiviral innate immunity by targeting MAVS for autophagic degradation.","authors":"Peng Zhou, Qingxiang Zhang, Yueshan Yang, Dong Chen, Anan Jongkaewwattana, Hui Jin, Hongbo Zhou, Rui Luo","doi":"10.1080/15548627.2024.2426114","DOIUrl":"10.1080/15548627.2024.2426114","url":null,"abstract":"<p><p>MAVS (mitochondrial antiviral signaling protein) is a crucial adaptor in antiviral innate immunity that must be tightly regulated to maintain immune homeostasis. In this study, we identified the duck <i>Anas platyrhynchos domesticus</i> TRIM13 (ApdTRIM13) as a novel negative regulator of duck MAVS (ApdMAVS) that mediates the antiviral innate immune response. Upon infection with RNA viruses, ApdTRIM13 expression increased, and it specifically binds to ApdMAVS through its TM domain, facilitating the degradation of ApdMAVS in a manner independent of E3 ligase activity. Furthermore, ApdTRIM13 recruits the autophagic cargo receptor duck SQSTM1 (ApdSQSTM1), which facilitates its interaction with ApdMAVS independent of ubiquitin signaling, and subsequently delivers ApdMAVS to phagophores for degradation. Depletion of ApdSQSTM1 reduces ApdTRIM13-mediated autophagic degradation of ApdMAVS, thereby enhancing the antiviral immune response. Collectively, our findings reveal a novel mechanism by which ApdTRIM13 regulates type I interferon production by targeting ApdMAVS for selective autophagic degradation mediated by ApdSQSTM1, providing insights into the crosstalk between selective autophagy and innate immune responses in avian species.<b>Abbreviation</b>: 3-MA: 3-methyladenine; ATG5: autophagy related 5; baf A1: bafilomycin A1; BECN1: beclin 1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CARD: caspase recruitment domain; co-IP: co-immunoprecipitation; DEFs: duck embryonic fibroblasts; DTMUV: duck Tembusu virus; eGFP: enhanced green fluorescent protein; hpi: hours post infection; IFIH1/MDA5: interferon induced with helicase C domain 1; IFN: interferon; IKBKE/IKKε: inhibitor of nuclear factor kappa B kinase subunit epsilon; IP: immunoprecipitation; IRF7: interferon regulatory factor 7; ISRE: interferon-stimulated response element; mAb: monoclonal antibody; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NFKB: nuclear factor kappa B; pAb: polyclonal antibody; poly(I:C): Polyriboinosinic polyribocytidylic acid; RIGI: RNA sensor RIG-I; RLR: RIGI-like-receptor; SeV: sendai virus; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TCID50: 50% tissue culture infectious dose; TM: tansmembrane; TOLLIP: toll interacting protein; TRIM: tripartite motif containing; UBA: ubiquitin-associated domain; Ub: ubiquitin; VSV: vesicular stomatitis virus; WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1). 有丝分裂过程中PHB2(禁止素2)的有效暴露取决于VDAC1(电压依赖性阴离子通道1)。
Autophagy Pub Date : 2024-11-19 DOI: 10.1080/15548627.2024.2426116
Moumita Roy, Sumangal Nandy, Elena Marchesan, Chayan Banerjee, Rupsha Mondal, Federico Caicci, Elena Ziviani, Joy Chakraborty
{"title":"Efficient PHB2 (prohibitin 2) exposure during mitophagy depends on VDAC1 (voltage dependent anion channel 1).","authors":"Moumita Roy, Sumangal Nandy, Elena Marchesan, Chayan Banerjee, Rupsha Mondal, Federico Caicci, Elena Ziviani, Joy Chakraborty","doi":"10.1080/15548627.2024.2426116","DOIUrl":"10.1080/15548627.2024.2426116","url":null,"abstract":"<p><p>Exposure of inner mitochondrial membrane resident protein PHB2 (prohibitin 2) during autophagic removal of depolarized mitochondria (mitophagy) depends on the ubiquitin-proteasome system. This uncovering facilitates the PHB2 interaction with phagophore membrane-associated protein MAP1LC3/LC3. It is unclear whether PHB2 is exposed randomly at mitochondrial rupture sites. Prior knowledge and initial screening indicated that VDAC1 (voltage dependent anion channel 1) might play a role in this phenomenon. Through <i>in vitro</i> biochemical assays and imaging, we have found that VDAC1-PHB2 interaction increases during mitochondrial depolarization. Subsequently, this interaction enhances the efficiency of PHB2 exposure and mitophagy. To investigate the relevance <i>in vivo</i>, we utilized <i>porin</i> (equivalent to VDAC1) knockout <i>Drosophila</i> line. Our findings demonstrate that during mitochondrial stress, porin is essential for Phb2 exposure, Phb2-Atg8 interaction and mitophagy. This study highlights that VDAC1 predominantly synchronizes efficient PHB2 exposure through mitochondrial rupture sites during mitophagy. These findings may provide insights to understand progressive neurodegeneration.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A PRKN-independent mechanism regulating cardiac mitochondrial quality control. 独立于 PRKN 的心脏线粒体质量控制调节机制
Autophagy Pub Date : 2024-11-17 DOI: 10.1080/15548627.2024.2423329
Wenjuan Wang, Jinbao Liu, Jie Li, Huabo Su
{"title":"A PRKN-independent mechanism regulating cardiac mitochondrial quality control.","authors":"Wenjuan Wang, Jinbao Liu, Jie Li, Huabo Su","doi":"10.1080/15548627.2024.2423329","DOIUrl":"10.1080/15548627.2024.2423329","url":null,"abstract":"<p><p>PRKN-dependent mitophagy plays a crucial role in maintaining mitochondrial health. Yet, PRKN-deficient mice do not exhibit mitochondrial and cardiac phenotypes at baseline, suggesting the existence of other mitochondrial ubiquitin (Ub) ligases. Here, we discuss our recent work identifying RNF7/RBX2 as a novel mitochondrial Ub ligase. Upon mitochondrial depolarization, RNF7 proteins are recruited to the mitochondria, where they directly ubiquitinate mitochondrial proteins and stabilize PINK1 expression, thereby promoting the clearance of damaged mitochondria and regulating mitochondrial turnover in the heart. The actions of RNF7 in mitochondria do not require PRKN. Ablation of <i>Rnf7</i> in mouse hearts results in severe mitochondrial dysfunction and heart failure. Our findings demonstrate that RNF7 is indispensable for mitochondrial turnover and cardiac homeostasis. These results open new avenues for exploring new PRKN-independent pathways that regulate mitophagy, which could have significant implications for developing therapeutic interventions for cardiac diseases.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142634310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PINK1-deficiency facilitates mitochondrial iron accumulation and colon tumorigenesis. PINK1 缺失会促进线粒体铁积累和结肠肿瘤发生。
Autophagy Pub Date : 2024-11-16 DOI: 10.1080/15548627.2024.2425594
Mariella Arcos, Lavanya Goodla, Hyeoncheol Kim, Sharina P Desai, Rui Liu, Kunlun Yin, Zhaoli Liu, David R Martin, Xiang Xue
{"title":"PINK1-deficiency facilitates mitochondrial iron accumulation and colon tumorigenesis.","authors":"Mariella Arcos, Lavanya Goodla, Hyeoncheol Kim, Sharina P Desai, Rui Liu, Kunlun Yin, Zhaoli Liu, David R Martin, Xiang Xue","doi":"10.1080/15548627.2024.2425594","DOIUrl":"10.1080/15548627.2024.2425594","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Mitophagy, the process by which cells eliminate damaged mitochondria, is mediated by PINK1 (PTEN induced kinase 1). Our recent research indicates that PINK1 functions as a tumor suppressor in colorectal cancer by regulating cellular metabolism. Interestingly, PINK1 ablation activated the NLRP3 (NLR family pyrin domain containing 3) inflammasome, releasing IL1B (interleukin 1 beta). However, inhibiting the NLRP3-IL1B signaling pathway with an IL1R (interleukin 1 receptor) antagonist or NLRP3 inhibitor did not hinder colon tumor growth after PINK1 loss. To identify druggable targets in PINK1-deficient tumors, ribonucleic acid sequencing analysis was performed on colon tumors from &lt;i&gt;pink1&lt;/i&gt; knockout and wild-type mice. Gene Set Enrichment Analysis highlighted the enrichment of iron ion transmembrane transporter activity. Subsequent qualitative polymerase chain reaction and western blot analysis revealed an increase in mitochondrial iron transporters, including mitochondrial calcium uniporter, in PINK1-deficient colon tumor cells and tissues. Live-cell iron staining demonstrated elevated cellular and mitochondrial iron levels in PINK1-deficient cells. Clinically used drugs deferiprone and minocycline reduced mitochondrial iron and superoxide levels, resulting in decreased colon tumor cell growth &lt;i&gt;in vitro&lt;/i&gt; and &lt;i&gt;in vivo&lt;/i&gt;. Manipulating the mitochondrial iron uptake protein MCU (mitochondrial calcium uniporter) also affected cell and xenograft tumor growth. This study suggests that therapies aimed at reducing mitochondrial iron levels may effectively inhibit colon tumor growth, particularly in patients with low PINK1 expression.&lt;b&gt;Abbreviation&lt;/b&gt;: ANOVA: analysis of variance; APC: adenomatous polyposis coli; cAMP: cyclic adenosine monophosphate; CDX2: caudal type homeobox 2; CGAS: cyclic GMP-AMP synthase; CRC: colorectal cancer; DNA: deoxyribonucleic acid; DFP: deferiprone; DMEM: Dulbecco's modified Eagle medium; DSS: dextran sodium sulfate; ERT2-Cre: Cre recombinase fused to a triple mutant form of the human estrogen receptor; EV: empty vector; GLB: glybenclamide/glyburide; H&E: hematoxylin and eosin; ICP-MS: inductively coupled plasma mass spectrometer; IL1B: interleukin 1 beta; kDa: kilodalton; MCU: mitochondrial calcium uniporter; MKI67: marker of proliferation Ki-67; mRNA: messenger ribonucleic acid; MTT: 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide; NLRP3: NLR family pyrin domain containing 3; OE: overexpression; PBS: phosphate-buffered saline; p-CREB: phosphorylated cAMP responsive element binding protein; PINK1: PTEN induced kinase 1; p-PRKAA/AMPK: phosphorylated protein kinase AMP-activated catalytic subunit alpha; qPCR: qualitative polymerase chain reaction; RNA-seq: ribonucleic acid sequencing; ROS: reactive oxygen species; sg: single guide; sh: short hairpin; SLC25A28: solute carrier family 25 member 28; SLC25A37/MFRN: solute carrier family 25 member 37; STING1: stimulator of interferon response cGAMP inte","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信