Reconstitution of autophagic-like membrane tethering reveals that Atg11 can bind and cluster vesicles on cargo mimetics.

IF 14.3
Devika Andhare, Sarah Katzenell, Sarah I Najera, Sylvie C Mauras, Katherine M Bauer, Michael J Ragusa
{"title":"Reconstitution of autophagic-like membrane tethering reveals that Atg11 can bind and cluster vesicles on cargo mimetics.","authors":"Devika Andhare, Sarah Katzenell, Sarah I Najera, Sylvie C Mauras, Katherine M Bauer, Michael J Ragusa","doi":"10.1080/15548627.2025.2551678","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy (hereafter, autophagy) is essential for the degradation of mitochondria from yeast to humans. Mitochondrial autophagy in yeast is initiated when the selective autophagy scaffolding protein Atg11 is recruited to mitochondria through its interaction with the selective autophagy receptor Atg32. This also results in the recruitment of small 30-nm vesicles that fuse to generate the initial phagophore membrane. We demonstrate that Atg11 can bind to autophagic-like membranes in vitro in a curvature-dependent manner in part via a predicted amphipathic helix. Deletion of the amphipathic helix from Atg11 results in a delay in the formation of mitophagy initiation sites in yeast. Furthermore, using a novel biochemical approach, we demonstrate that the interaction between Atg11 and Atg32 results in the tethering of autophagic-like vesicles in clusters to giant unilamellar vesicles containing a lipid composition designed to mimic the outer mitochondrial membrane. We also demonstrate that the N-terminal region of Atg11 is an important mediator of vesicle tethering to cargo mimetics and that clustering of autophagic-like vesicles requires the C-terminal region of Atg11. Taken together, our results reveal that Atg11 clusters into high-order oligomers, can tether autophagic-like membranes and due to its ability to oligomerize can cluster vesicles on the surface of cargo mimetics. This work provides new insight into the mechanisms of protein and membrane clustering by Atg11. Given the increasing importance of protein oligomerization and clustering in autophagy, these results have important implications in the initiation of mitochondrial autophagy.<b>Abbreviations</b> Atg11: autophagy related 11; Atg11-Cterm: C-terminal region of Atg11; Atg11-Nterm: N-terminal region of Atg11; Atg32: autophagy related 32; COV: coefficient of variance; DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOPS: 1,2-dioleoyl-sn-glycero-3-phospho-L-serine; FRAP: fluorescence recovery after photobleaching; GLT: GUV and liposome tethering; GUV: giant unilamellar vesicle; MKO: multiple knockout; OMM: outer mitochondrial membrane; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; RhPE: rhodamine phosphatidylethanolamine; SAR: selective autophagy receptor; SEC: size-exclusion chromatography; SLB: supported lipid bilayers; SMrT: supported membrane templates; YPL: yeast polar lipids.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-20"},"PeriodicalIF":14.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12453139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2551678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Macroautophagy (hereafter, autophagy) is essential for the degradation of mitochondria from yeast to humans. Mitochondrial autophagy in yeast is initiated when the selective autophagy scaffolding protein Atg11 is recruited to mitochondria through its interaction with the selective autophagy receptor Atg32. This also results in the recruitment of small 30-nm vesicles that fuse to generate the initial phagophore membrane. We demonstrate that Atg11 can bind to autophagic-like membranes in vitro in a curvature-dependent manner in part via a predicted amphipathic helix. Deletion of the amphipathic helix from Atg11 results in a delay in the formation of mitophagy initiation sites in yeast. Furthermore, using a novel biochemical approach, we demonstrate that the interaction between Atg11 and Atg32 results in the tethering of autophagic-like vesicles in clusters to giant unilamellar vesicles containing a lipid composition designed to mimic the outer mitochondrial membrane. We also demonstrate that the N-terminal region of Atg11 is an important mediator of vesicle tethering to cargo mimetics and that clustering of autophagic-like vesicles requires the C-terminal region of Atg11. Taken together, our results reveal that Atg11 clusters into high-order oligomers, can tether autophagic-like membranes and due to its ability to oligomerize can cluster vesicles on the surface of cargo mimetics. This work provides new insight into the mechanisms of protein and membrane clustering by Atg11. Given the increasing importance of protein oligomerization and clustering in autophagy, these results have important implications in the initiation of mitochondrial autophagy.Abbreviations Atg11: autophagy related 11; Atg11-Cterm: C-terminal region of Atg11; Atg11-Nterm: N-terminal region of Atg11; Atg32: autophagy related 32; COV: coefficient of variance; DOPC: 1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPE: 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine; DOPS: 1,2-dioleoyl-sn-glycero-3-phospho-L-serine; FRAP: fluorescence recovery after photobleaching; GLT: GUV and liposome tethering; GUV: giant unilamellar vesicle; MKO: multiple knockout; OMM: outer mitochondrial membrane; PC: phosphatidylcholine; PE: phosphatidylethanolamine; PtdIns: phosphatidylinositol; PtdIns3P: phosphatidylinositol-3-phosphate; RhPE: rhodamine phosphatidylethanolamine; SAR: selective autophagy receptor; SEC: size-exclusion chromatography; SLB: supported lipid bilayers; SMrT: supported membrane templates; YPL: yeast polar lipids.

自噬样膜系系的重建表明,Atg11可以在货物模拟物上结合和聚集囊泡。
巨噬(以下简称自噬)是线粒体从酵母到人类的降解所必需的。酵母中,选择性自噬支架蛋白Atg11通过与选择性自噬受体Atg32的相互作用被招募到线粒体中,从而启动线粒体自噬。这也导致小的30纳米囊泡的招募,这些囊泡融合产生最初的吞噬细胞膜。我们证明了Atg11可以在体外以曲率依赖的方式部分通过预测的两亲螺旋结合到自噬样膜上。从Atg11中删除两亲螺旋导致酵母中有丝自噬起始位点的形成延迟。此外,利用一种新的生化方法,我们证明了Atg11和Atg32之间的相互作用导致簇状自噬样囊泡被拴在巨大的单层囊泡上,其中含有一种脂质成分,旨在模拟线粒体外膜。我们还证明了Atg11的n端区域是囊泡粘附到货物模拟物的重要介质,并且自噬样囊泡的聚集需要Atg11的c端区域。综上所述,我们的研究结果表明,Atg11聚集成高阶低聚物,可以系住自噬样膜,并且由于其低聚的能力,可以在货物模拟物表面聚集囊泡。这项工作为Atg11蛋白和膜聚集的机制提供了新的见解。鉴于蛋白质寡聚化和聚集在自噬中的重要性日益增加,这些结果对线粒体自噬的启动具有重要意义。缩写Atg11:自噬相关11;Atg11- cterm: Atg11的c端区;Atg11- nterm: Atg11的n端区;Atg32:自噬相关32;COV:方差系数;2-dioleoyl-sn-glycero-3-phosphocholine DOPC: 1;涂料:1、2-dioleoyl-sn-glycero-3-phosphoethanolamine;计划:1、2-dioleoyl-sn-glycero-3-phospho-L-serine;FRAP:光漂白后荧光恢复;GLT: GUV与脂质体黏附;GUV:巨大单层囊泡;MKO:多重击倒;OMM:线粒体外膜;PC:磷脂酰胆碱;体育:磷脂酰乙醇胺;PtdIns:磷脂酰肌醇;PtdIns3P: phosphatidylinositol-3-phosphate;RhPE:罗丹明磷脂酰乙醇胺;SAR:选择性自噬受体;SEC:排色色谱法;SLB:支持脂质双分子层;SMrT:支撑膜模板;酵母极性脂质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信