Autophagy最新文献

筛选
英文 中文
Chaperone-mediated autophagy contributes to chromosomal stability by controlling TTC28 degradation.
Autophagy Pub Date : 2025-02-07 DOI: 10.1080/15548627.2025.2456685
Ge Zhang, Wei Tian, Dajun Deng
{"title":"Chaperone-mediated autophagy contributes to chromosomal stability by controlling TTC28 degradation.","authors":"Ge Zhang, Wei Tian, Dajun Deng","doi":"10.1080/15548627.2025.2456685","DOIUrl":"10.1080/15548627.2025.2456685","url":null,"abstract":"<p><p>While macroautophagy (autophagy) contributes to maintaining chromosomal stability via multiple pathways, including regulating chromatin ubiquitination and cytoplasmic DNA fragment degradation, the impacts of microautophagy and chaperone-mediated autophagy (CMA) on maintaining chromosomal stability are not known. The <i>TTC28</i> (tetratricopeptide repeat domain 28) gene is frequently mutated and downregulated in human cancers. The molecular mass of the TTC28 protein is 271 kDa, which makes its functional study very difficult. Recently, we reported that TTC28 plays a key role in maintaining chromosomal stability, probably through regulating mitosis and cytokinesis, and that <i>TTC28</i> downregulation may contribute to the high chromosomal instability (CIN) of cancer cells, according to the results of serial experiments and bioinformatics analyses. Notably, our findings demonstrate that TTC28 is a substrate of CMA and that the CMA pathway also plays a role in maintaining chromosomal stability in a TTC28-dependent manner. These findings demonstrate that CMA-mediated degradation is a master regulator of the ability of TTC28 to maintain genome stability.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143076673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flavivirus NS2A orchestrates reticulophagy to enhance viral pathogenicity. 黄热病病毒 NS2A 协调网状吞噬作用以增强病毒的致病性。
Autophagy Pub Date : 2025-02-07 DOI: 10.1080/15548627.2025.2457112
Linliang Zhang, Yali Qin, Mingzhou Chen
{"title":"Flavivirus NS2A orchestrates reticulophagy to enhance viral pathogenicity.","authors":"Linliang Zhang, Yali Qin, Mingzhou Chen","doi":"10.1080/15548627.2025.2457112","DOIUrl":"10.1080/15548627.2025.2457112","url":null,"abstract":"<p><p>Selective endoplasmic reticulum (ER) autophagy (reticulophagy) is essential for maintaining ER homeostasis. The E3 ligase AMFR facilitates the ubiquitination of the reticulophagy receptor RETREG1/FAM134B, thereby promoting the dynamic flux of the reticulophagy process. Flaviviruses exploit the ER during their replication cycles, highlighting the importance of ER quantity and accessibility in flavivirus infections. However, the role of reticulophagy in viral replication and the complex mechanisms by which viruses modulate reticulophagy to enhance pathogenicity remain poorly understood. In a recent study, we demonstrate that the Zika virus (ZIKV) hijacks the ER-located E3 ligase AMFR to ubiquitinate NS2A, leading to the degradation of the key reticulophagy receptor RETREG1. This inhibition of the reticulophagy process promotes virus-induced microcephaly in human brain organoids and enhances viral pathogenicity in mouse models. Notably, the AMFR-mediated ubiquitination of ZIKV-NS2A and its functional interaction with RETREG1 are conserved across the NS2A of other flaviviruses, including those from Dengue virus, West Nile virus, and Japanese encephalitis virus.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143191531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle.
Autophagy Pub Date : 2025-02-06 DOI: 10.1080/15548627.2025.2457925
Han Dong, Yifan Lyu, Chien-Yung Huang, Shih-Yin Tsai
{"title":"Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle.","authors":"Han Dong, Yifan Lyu, Chien-Yung Huang, Shih-Yin Tsai","doi":"10.1080/15548627.2025.2457925","DOIUrl":"10.1080/15548627.2025.2457925","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Postmitotic skeletal muscle critically depends on tightly regulated protein degradation to maintain proteomic stability. Impaired macroautophagy/autophagy-lysosomal or ubiquitin-proteasomal protein degradation causes the accumulation of damaged proteins, ultimately accelerating muscle dysfunction with age. While &lt;i&gt;in vitro&lt;/i&gt; studies have demonstrated the complementary nature of these systems, their interplay at the organism levels remains poorly understood. Here, our study reveals novel insights into this complex relationship in autophagy-deficient skeletal muscle. We demonstrated that despite a compensatory increase in proteasome level in response to autophagy impairment, 26S proteasome activity was not proportionally enhanced in autophagy-deficient skeletal muscle. This functional deficit was partly attributed to reduced ATP levels to fuel the 26S proteasome. Remarkably, we found that activation of EIF4EBP1, a crucial inhibitor of cap-dependent translation, restored and even augmented proteasomal function through dual mechanisms. First, genetically activating EIF4EBP1 enhanced both ATP-dependent 26S proteasome and ATP-independent 20S proteasome activities, thereby expanding overall protein degradation capacity. Second, EIF4EBP1 activation caused muscle fiber transformation and increased mitochondrial biogenesis, thus replenishing ATP levels for 26S proteasome activation. Notably, the improved performance of the 20S proteasome in EIF4EBP1-activated skeletal muscle was attributed to an increased abundance of the immunoproteasome, a subtype specially adapted to function under oxidative stress conditions. This dual action of EIF4EBP1 activation preserved proteomic integrity in autophagy-deficient skeletal muscle. Our findings uncover a novel role of EIF4EBP1 in improving protein quality control, presenting a promising therapeutic strategy for autophagy-related muscular disorders and potentially other conditions characterized by proteostatic imbalance.&lt;b&gt;Abbreviations&lt;/b&gt;: 3-MA: 3-methyladenine; ACAC/ACC: acetyl-Coenzyme A carboxylase; AMPK: AMP-activated protein kinase; ATG5: autophagy related 5; ATG7: autophagy related 7; ATP: adenosine triphosphate; ATP5F1A/ATP5A: ATP synthase F1 subunit alpha; CKM-Cre: creatine kinase, muscle-Cre; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSK: cathepsin K; CTSL: cathepsin L; CUL3: cullin 3; EDL: extensor digitorum longus; EIF4E: eukaryotic translation initiation factor 4E; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; EIF4F: eukaryotic translation initiation factor 4F complex; FBXO32/ATROGIN1/MAFbx: F-box protein 32; GFP: green fluorescent protein; IFNG/IFN-γ: interferon gamma; KEAP1: kelch-like ECH-associated protein 1; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; &lt;i&gt;Myl1/Mlc1f&lt;/i&gt;-Cre: myosin, light polypeptide 1 (promo","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143061560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a sensitive sandwich ELISA against human PINK1.
Autophagy Pub Date : 2025-02-06 DOI: 10.1080/15548627.2025.2457915
Zahra Baninameh, Jens O Watzlawik, Bernardo A Bustillos, Gabriella Fiorino, Tingxiang Yan, Szymon L Lewicki, Haonan Zhang, Dennis W Dickson, Joanna Siuda, Zbigniew K Wszolek, Wolfdieter Springer, Fabienne C Fiesel
{"title":"Development and validation of a sensitive sandwich ELISA against human PINK1.","authors":"Zahra Baninameh, Jens O Watzlawik, Bernardo A Bustillos, Gabriella Fiorino, Tingxiang Yan, Szymon L Lewicki, Haonan Zhang, Dennis W Dickson, Joanna Siuda, Zbigniew K Wszolek, Wolfdieter Springer, Fabienne C Fiesel","doi":"10.1080/15548627.2025.2457915","DOIUrl":"https://doi.org/10.1080/15548627.2025.2457915","url":null,"abstract":"<p><p>The ubiquitin kinase and ligase PINK1 and PRKN together label damaged mitochondria for their elimination in lysosomes by selective autophagy (mitophagy). This cytoprotective quality control pathway is genetically linked to familial Parkinson disease but is also altered during aging and in other neurodegenerative disorders. However, the molecular mechanisms of these mitophagy changes remain uncertain. In healthy mitochondria, PINK1 protein is continuously imported, cleaved, and degraded, but swiftly accumulates on damaged mitochondria, where it triggers the activation of the mitophagy pathway by phosphorylating its substrates ubiquitin and PRKN. Levels of PINK1 protein can therefore be used as a proxy for mitochondrial damage and mitophagy initiation. However, validated methodologies to sensitively detect and quantify PINK1 protein are currently not available. Here, we describe the development and thorough validation of a novel immunoassay to measure human PINK1 on the Meso Scale Discovery platform. The final assay showed excellent linearity, parallelism, and sensitivity. Even in the absence of mitochondrial stress (i.e. at basal conditions), when PINK1 protein is usually not detectable by immunoblotting, significant differences were obtained when comparing samples from patient fibroblasts or differentiated neurons with and without PINK1 expression. Of note, PINK1 protein levels were found increased in human postmortem brain with normal aging, but not in brains with Alzheimer disease, suggesting that indeed different molecular mechanisms are at play. In summary, we have developed a novel sensitive PINK1 immunoassay that will complement other efforts to decipher the roles and biomarker potential of the PINK1-PRKN mitophagy pathway in the physiological and pathological context. <b>Abbreviations</b>: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECL: electrochemiluminescence; ELISA: enzyme-linked immunosorbent assay; iPSC: induced pluripotent stem cell; KO: knockout; LLOQ: lower limit of quantification; MSD: Meso Scale Discovery; PD: Parkinson disease; p-S65-Ub: serine-65 phosphorylated ubiquitin; Ub: ubiquitin; ULOQ: upper limit of quantification; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143257589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Were the autophagosome-lysosome/vacuole fusion models illustrated correctly in the literature? 文献中对自噬体-溶酶体/液泡融合模型的说明是否正确?
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-09-29 DOI: 10.1080/15548627.2024.2405954
Yongheng Liang
{"title":"Were the autophagosome-lysosome/vacuole fusion models illustrated correctly in the literature?","authors":"Yongheng Liang","doi":"10.1080/15548627.2024.2405954","DOIUrl":"10.1080/15548627.2024.2405954","url":null,"abstract":"<p><p>Exploration of autophagy in different species has become a hotspot in cell biology in the past decades. Macroautophagy (hereafter, autophagy) is the most widely studied type. One of the hallmarks of autophagy is the fusion of the outer membrane (OM) of a closed double-membrane mature autophagosome (AP) with the lysosomal/vacuolar single membrane. Most researchers in the autophagy field agree upon this description. However, AP-lysosome/vacuole fusion models that do not follow this description frequently appear in the literature, even published in some prestigious journals until now. Some of the misrepresented models are from autophagy laboratories with brilliant publication records. These flaws should be addressed as a public announcement in the autophagy field to avoid spreading misinformation. The editors and reviewers are the guardians to ensure correct models.<b>Abbreviations</b>: AP: autophagosome; IM: inner membrane; OM: outer membrane.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"476-479"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142309353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis. MLKL-USP7-UBA52信号通过维持泛素平衡对大脑自噬不可或缺。
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-09-19 DOI: 10.1080/15548627.2024.2395727
Zhigang Zhang, Shuai Chen, Shirui Jun, Xirong Xu, Yuchuan Hong, Xifei Yang, Liangyu Zou, You-Qiang Song, Yu Chen, Jie Tu
{"title":"MLKL-USP7-UBA52 signaling is indispensable for autophagy in brain through maintaining ubiquitin homeostasis.","authors":"Zhigang Zhang, Shuai Chen, Shirui Jun, Xirong Xu, Yuchuan Hong, Xifei Yang, Liangyu Zou, You-Qiang Song, Yu Chen, Jie Tu","doi":"10.1080/15548627.2024.2395727","DOIUrl":"10.1080/15548627.2024.2395727","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Individuals with genetic elimination of &lt;i&gt;MLKL&lt;/i&gt; (mixed lineage kinase domain like pseudokinase) exhibit an increased susceptibility to neurodegenerative diseases like Alzheimer disease (AD). However, the mechanism is not yet fully understood. Here, we observed significant compromise in macroautophagy/autophagy in the brains of &lt;i&gt;mlkl&lt;/i&gt; knockout (KO) mice, as evidenced by the downregulation of BECN1/Beclin1 and ULK1 (unc-51 like autophagy activating kinase 1). We identified UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1) as the binding partner of MLKL under physiological conditions. Loss of &lt;i&gt;Mlkl&lt;/i&gt; induced a decrease in ubiquitin levels by preventing UBA52 cleavage. Furthermore, we demonstrated that the deubiquitinase (DUB) USP7 (ubiquitin specific peptidase 7) mediates the processing of UBA52, which is regulated by MLKL. Moreover, our results indicated that the reduction of BECN1 and ULK1 upon &lt;i&gt;Mlkl&lt;/i&gt; loss is attributed to a decrease in their lysine 63 (K63)-linked polyubiquitination. Additionally, single-nucleus RNA sequencing revealed that the loss of &lt;i&gt;Mlkl&lt;/i&gt; resulted in the disruption of multiple neurodegenerative disease-related pathways, including those associated with AD. These results were consistent with the observation of cognitive impairment in &lt;i&gt;mlkl&lt;/i&gt; KO mice and exacerbation of AD pathologies in an AD mouse model with &lt;i&gt;mlkl&lt;/i&gt; deletion. Taken together, our findings demonstrate that MLKL-USP7-UBA52 signaling is required for autophagy in brain through maintaining ubiquitin homeostasis, and highlight the contribution of &lt;i&gt;Mlkl&lt;/i&gt; loss-induced ubiquitin deficits to the development of neurodegeneration. Thus, the maintenance of adequate levels of ubiquitin may provide a novel perspective to protect individuals from multiple neurodegenerative diseases through regulating autophagy.&lt;b&gt;Abbreviations&lt;/b&gt;: 4HB: four-helix bundle; AAV: adeno-associated virus; AD: Alzheimer disease; AIF1: allograft inflammatory factor 1; APOE: apolipoprotein E; APP: amyloid beta precursor protein; Aβ: amyloid β; BECN1: beclin 1; co-IP: co-immunoprecipitation; DEGs: differentially expressed genes; DLG4: discs large MAGUK scaffold protein 4; DUB: deubiquitinase; EBSS: Earle's balanced salt solution; GFAP: glial fibrillary acidic protein; HRP: horseradish peroxidase; IL1B: interleukin 1 beta; IL6: interleukin 6; IPed: immunoprecipitated; KEGG: Kyoto Encyclopedia of Genes and Genomes; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MLKL: mixed lineage kinase domain like pseudokinase; NSA: necrosulfonamide; OPCs: oligodendrocyte precursor cells; PFA: paraformaldehyde; PsKD: pseudo-kinase domain; SYP: synaptophysin; UB: ubiquitin; UBA52: ubiquitin A-52 residue ribosomal protein fusion product 1; UCHL3: ubiquitin C-terminal hydrolase L3; ULK1: unc-51 like autophagy activating kinase 1; UMAP: uniform manifold approximation and projection; UPS: ubiquitin-proteasome system; USP7: ubiquitin specif","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"424-446"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration. 伴侣介导的自噬对 PLCG1 的降解功能受损会促进细胞衰老和椎间盘退化。
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-09-10 DOI: 10.1080/15548627.2024.2395797
Zhangrong Cheng, Weikang Gan, Qian Xiang, Kangcheng Zhao, Haiyang Gao, Yuhang Chen, Pengzhi Shi, Anran Zhang, Gaocai Li, Yu Song, Xiaobo Feng, Cao Yang, Yukun Zhang
{"title":"Impaired degradation of PLCG1 by chaperone-mediated autophagy promotes cellular senescence and intervertebral disc degeneration.","authors":"Zhangrong Cheng, Weikang Gan, Qian Xiang, Kangcheng Zhao, Haiyang Gao, Yuhang Chen, Pengzhi Shi, Anran Zhang, Gaocai Li, Yu Song, Xiaobo Feng, Cao Yang, Yukun Zhang","doi":"10.1080/15548627.2024.2395797","DOIUrl":"10.1080/15548627.2024.2395797","url":null,"abstract":"<p><p>Defects in chaperone-mediated autophagy (CMA) are associated with cellular senescence, but the mechanism remains poorly understood. Here, we found that CMA inhibition induced cellular senescence in a calcium-dependent manner and identified its role in TNF-induced senescence of nucleus pulposus cells (NPC) and intervertebral disc degeneration. Based on structural and functional proteomic screens, PLCG1 (phospholipase C gamma 1) was predicted as a potential substrate for CMA deficiency to affect calcium homeostasis. We further confirmed that PLCG1 was a key mediator of CMA in the regulation of intracellular calcium flux. Aberrant accumulation of PLCG1 caused by CMA blockage resulted in calcium overload, thereby inducing NPC senescence. Immunoassays on human specimens showed that reduced LAMP2A, the rate-limiting protein of CMA, or increased PLCG1 was associated with disc senescence, and the TNF-induced disc degeneration in rats was inhibited by overexpression of <i>Lamp2a</i> or knockdown of <i>Plcg1</i>. Because CMA dysregulation, calcium overload, and cellular senescence are common features of disc degeneration and other age-related degenerative diseases, the discovery of actionable molecular targets that can link these perturbations may have therapeutic value.<b>Abbreviation:</b> ATRA: all-trans-retinoic acid; BrdU: bromodeoxyuridine; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16-INK4A: cyclin dependent kinase inhibitor 2A; CMA: chaperone-mediated autophagy; DHI: disc height index; ER: endoplasmic reticulum; IP: immunoprecipitation; IP3: inositol 1,4,5-trisphosphate; ITPR/IP3R: inositol 1,4,5-trisphosphate receptor; IVD: intervertebral disc; IVDD: intervertebral disc degeneration; KD: knockdown; KO: knockout; Leu: leupeptin; MRI: magnetic resonance imaging; MS: mass spectrometry; N/L: NH<sub>4</sub>Cl and leupeptin; NP: nucleus pulposus; NPC: nucleus pulposus cells; PI: protease inhibitors; PLC: phospholipase C; PLCG1: phospholipase C gamma 1; ROS: reactive oxygen species; RT-qPCR: real-time quantitative reverse transcription PCR; SA-GLB1/β-gal: senescence-associated galactosidase beta 1; SASP: senescence-associated secretory phenotype; STV: starvation; TMT: tandem mass tag; TNF: tumor necrosis factor; TP53: tumor protein p53; UPS: ubiquitin-proteasome system.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"352-373"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759519/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142115911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Autophagy-dependent ferroptosis mediates multiple sclerosis. 自噬依赖性铁蛋白沉积介导多发性硬化症。
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI: 10.1080/15548627.2024.2419112
Daolin Tang, Rui Kang, Daniel J Klionsky
{"title":"Autophagy-dependent ferroptosis mediates multiple sclerosis.","authors":"Daolin Tang, Rui Kang, Daniel J Klionsky","doi":"10.1080/15548627.2024.2419112","DOIUrl":"10.1080/15548627.2024.2419112","url":null,"abstract":"<p><p>A recent paper published in <i>Cell</i> by Woo et al. reported that autophagy-dependent ferroptosis mediated by STING1 is involved in neuronal death associated with multiple sclerosis (MS). This research broadens our understanding of the pathogenesis of MS and opens new avenues for therapeutic interventions.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"257-259"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. 将自噬成分人工靶向线粒体揭示了常规和非常规的丝裂吞噬途径。
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-09-08 DOI: 10.1080/15548627.2024.2395149
Katharina C Lorentzen, Alan R Prescott, Ian G Ganley
{"title":"Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways.","authors":"Katharina C Lorentzen, Alan R Prescott, Ian G Ganley","doi":"10.1080/15548627.2024.2395149","DOIUrl":"10.1080/15548627.2024.2395149","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the &lt;i&gt;mito&lt;/i&gt;-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.&lt;b&gt;Abbreviation:&lt;/b&gt; aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A&lt;sub&gt;1&lt;/sub&gt;; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"315-337"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
USP8 promotes intracellular infection by enhancing ESCRT-mediated membrane repair, limiting xenophagy, and reducing oxidative stress. USP8 通过增强 ESCRT 介导的膜修复、限制增生和降低氧化应激,促进细胞内感染。
Autophagy Pub Date : 2025-02-01 Epub Date: 2024-09-11 DOI: 10.1080/15548627.2024.2395134
Pallavi Chandra, Jennifer A Philips
{"title":"USP8 promotes intracellular infection by enhancing ESCRT-mediated membrane repair, limiting xenophagy, and reducing oxidative stress.","authors":"Pallavi Chandra, Jennifer A Philips","doi":"10.1080/15548627.2024.2395134","DOIUrl":"10.1080/15548627.2024.2395134","url":null,"abstract":"<p><p>The host ESCRT-machinery repairs damaged endolysosomal membranes. If damage persists, selective macroautophagy/autophagy clears the damaged compartment. <i>Mycobacterium tuberculosis</i> (Mtb) is an intracellular pathogen that damages the phagosomal membrane and targets ESCRT-mediated repair as part of its virulence program. The E3 ubiquitin ligases PRKN and SMURF1 promote autophagic capture of damaged, Mtb-containing phagosomes. Because ubiquitination is a reversible process, we anticipated that host deubiquitinases (DUBs) would also be involved. Here, we screened all predicted mouse DUBs for their role in ubiquitin targeting and control of intracellular Mtb. We show that USP8 (ubiquitin specific peptidase 8) colocalizes with intracellular Mtb, recognizes phagosomal membrane damage, and is required for ESCRT-dependent membrane repair. Furthermore, we show that USP8 regulates the NFE2L2/NRF2-dependent antioxidant signature. Taken together, our study demonstrates a central role of USP8 in promoting Mtb intracellular growth by promoting phagosomal membrane repair, limiting ubiquitin-driven selective autophagy, and reducing oxidative stress.<b>Abbreviation:</b> BMDMs: bone marrow-derived macrophages; CFUs: colony-forming units; DUB: deubiquitinase; ESCRT: endosomal sorting complexes required for transport; LLOMe: L-leucyl-L-leucine methyl ester; MFI: mean fluorescence intensity; MOI: multiplicity of infection; Mtb: <i>Mycobacterium tuberculosis</i>; NFE2L2/NRF2: nuclear factor, erythroid derived 2, like 2; PMA: phorbol 12-myristate 13-acetate; ROS: reactive oxygen species; USP8: ubiquitin specific peptidase 8.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"298-314"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759523/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142047647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信