AutophagyPub Date : 2025-04-04DOI: 10.1080/15548627.2025.2483598
Zhangyu Tian, Yiming Wu, Bin Yi, Ling Li, Yan Liu, Hao Zhang, Aimei Li
{"title":"ESCRT III-mediated lysosomal repair improve renal tubular cell injury in cisplatin-induced AKI.","authors":"Zhangyu Tian, Yiming Wu, Bin Yi, Ling Li, Yan Liu, Hao Zhang, Aimei Li","doi":"10.1080/15548627.2025.2483598","DOIUrl":"10.1080/15548627.2025.2483598","url":null,"abstract":"<p><p>The chemotherapeutic agent cisplatin is widely utilized for the treatment of various solid tumors. However, its clinical utility is limited by nephrotoxicity. Although numerous studies have demonstrated the potential of enhancing macroautophagy/autophagy in alleviating cisplatin-induced acute kidney injury (AKI), the dynamics of the autophagic process during renal tubular injury remain to be elucidated. In our investigation, we observed that cisplatin treatment leads to increased expression of LC3-II, GABARAPL1, SQSTM1/p62 and NBR1 in mouse renal tubular epithelial cells and BUMPT cells. Moreover, ultrastructurally, there is extensive accumulation of autophagic vacuoles in AKI mice. These findings imply that cisplatin-induced AKI results in impaired autophagic flow within renal tubular cells. Furthermore, LGALS3 (galectin 3) was found to be enriched in lysosomes after cisplatin treatment, revealing a close association between autophagy dysfunction and impaired lysosomal membrane integrity. Given the damaging contents of lysosomes, lysosomal membrane permeabilization must be rapidly resolved. Our findings showed that ESCRT III subunit CHMP4A-mediated lysosomal membrane repair significantly ameliorates autophagic defects and protects against lysosomal damage-induced cell death in a cisplatin-induced AKI model. In conclusion, our study indicates that ESCRT III-mediated lysosomal repair can relieve cisplatin-induced cell apoptosis and restore normal autophagy function in renal tubular epithelial cells. This mechanism plays a protective role against cisplatin-induced AKI.<b>Abbreviations:</b> AAV: adeno-associated virus; AKI: acute kidney injury; CQ: chloroquine; ESCRT: endosomal sorting complex required for transport; LMP: lysosomal membrane permeabilization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PAS: periodic acid Schiff; PTECs: proximal renal tubule epithelial cells; TEM: transmission electron microscopy; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labeling.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-18"},"PeriodicalIF":0.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-04DOI: 10.1080/15548627.2025.2481126
Yuan Yuan Wei, Ting Ting Chen, Da Wei Zhang, Ying Zhang, Fang Li, Yi Chuan Ding, Ming Yu Wang, Ling Zhang, Ke Gong Chen, Guang He Fei
{"title":"Microplastics exacerbate ferroptosis via mitochondrial reactive oxygen species-mediated autophagy in chronic obstructive pulmonary disease.","authors":"Yuan Yuan Wei, Ting Ting Chen, Da Wei Zhang, Ying Zhang, Fang Li, Yi Chuan Ding, Ming Yu Wang, Ling Zhang, Ke Gong Chen, Guang He Fei","doi":"10.1080/15548627.2025.2481126","DOIUrl":"10.1080/15548627.2025.2481126","url":null,"abstract":"<p><p>Microplastics (MPs) induce mitochondrial dysfunction and iron accumulation, contributing to mitochondrial macroautophagy/autophagy and ferroptosis, which has increased susceptibility to the exacerbation of chronic obstructive pulmonary disease (COPD); however, the underlying mechanism remains unclear. We demonstrated that MPs intensified inflammation in COPD by enhancing autophagy-dependent ferroptosis (ADF) in vitro and in vivo. In the lung tissues of patients with COPD, the concentrations of MPs, especially polystyrene microplastics (PS-MPs), were significantly higher than that of the control group, as detected by pyrolysis gas chromatography mass spectrometry (Py-GCMS), with increased iron accumulation. The exposure to PS-MPs, 2 μm in size, resulted in their being deposited in the lungs of COPD model mice detected by optical in vivo imaging, and observed in bronchial epithelial cells traced by GFP-labeled PS-MPs. There were mitochondrial impairments accompanied by mitochondrial reactive oxygen species (mito-ROS) overproduction and significantly increased levels of lysosome biogenesis and acidification in pDHBE cells with PS-MP stimulation, triggering occurrence of ferritinophagy and enhancing ADF in COPD, which triggered acute exacerbation of COPD (AECOPD). Reestablishing autophagy-dependent ferroptosis via mitochondria-specific ROS scavenging or ferroptosis inhibition alleviated excessive inflammation and ameliorated AECOPD induced by PS-MPs. Collectively, our data initially revealed that MPs exacerbate ferroptosis via mito-ROS-mediated autophagy in COPD, which sheds light on further hazard assessments of MPs on human respiratory health and potential therapeutic agents for patients with COPD.<b>Abbreviations:</b> ADF: autophagy-dependent ferroptosis; AECOPD: acute exacerbation of chronic obstructive pulmonary disease; Cchord: static compliance; COPD: chronic obstructive pulmonary disease; CQ: chloroquine; CS: cigarette smoke; DEGs: differentially expressed genes; Fer-1: ferrostatin-1; FEV 0.1: forced expiratory volume in first 100 ms; FVC: forced vital capacity; GSH: glutathione; HE: hematoxylin and eosin; IL1B/IL-1β: interleukin 1 beta; IL6: interleukin 6; MDA: malondialdehyde; Mito-ROS: mitochondrial reactive oxygen species; MMA: methyl methacrylate; MMF: maximal mid-expiratory flow curve; MMP: mitochondrial membrane potential; MOI: multiplicity of infection; MPs: microplastics; MV: minute volume; PA: polyamide; PBS: phosphate-buffered saline; PC: polycarbonate; pDHBE: primary human bronchial epithelial cell from COPD patients; PET: polyethylene terephthalate; PIF: peak inspiratory flow; PLA: polylactic acid; pNHBE: primary normal human bronchial epithelial cell; PS-MPs: polystyrene microplastics; PVA: polyvinyl acetate; PVC: polyvinyl chloride; Py-GCMS: pyrolysis gas chromatography mass spectrometry; SEM: scanning electron microscopy; Te: expiratory times; Ti: inspiratory times; TNF/TNF-α: tumor necrosis factor.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-27"},"PeriodicalIF":0.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-04DOI: 10.1080/15548627.2025.2483887
Yi-Tian Ying, Jing Yang, Hui-Wen Ye, Mei-Yi Chen, Xia Liu, Wei Chen, Jin-Xin Xu, Xun Tan
{"title":"<i>Staphylococcus aureus</i> reprograms CASP8 (caspase 8) signaling to evade cell death and Xenophagy.","authors":"Yi-Tian Ying, Jing Yang, Hui-Wen Ye, Mei-Yi Chen, Xia Liu, Wei Chen, Jin-Xin Xu, Xun Tan","doi":"10.1080/15548627.2025.2483887","DOIUrl":"10.1080/15548627.2025.2483887","url":null,"abstract":"<p><p>Regulated cell death and xenophagy constitute fundamental cellular mechanisms against invading microorganisms. <i>Staphylococcus aureus</i>, a notorious pathogen, can invade and persist within host cells for extended periods. Here, we describe a novel mechanism by which <i>S. aureus</i> subverts these host defenses through the manipulation of the CASP8 (caspase 8) signaling pathway. Upon invasion, <i>S. aureus</i> triggers the assembly of a RIPK3 (receptor interacting serine/threonine kinase 3) complex to induce CASP8 autoprocessing. However, the bacterium inhibits CUL3 (cullin 3)-dependent K63-linked ubiquitination, leading to an atypical activation of CASP8. This non-canonical activation does not initiate the CASP8-CASP3 cascade but instead suppresses RIPK3-dependent necroptosis, a regulated cell death pathway typically activated when apoptosis fails. The resulting non-apoptotic, cleaved CASP8 redirects its enzymatic activity toward cleaving SQSTM1/p62, a selective macroautophagy/autophagy receptor, thus enabling <i>S. aureus</i> to evade antimicrobial xenophagy. The results of this study suggest that <i>S. aureus</i> reprograms the CASP8 signaling pathway from inducing cell death to preserving cell survival and inhibiting xenophagy, a critical strategy that supports its stealthy replication and persistence within host cells.<b>Abbreviations</b>: CASP3: caspase 3; CASP8: caspase 8; CFU: colony-forming units; CUL3: cullin 3; DUB: deubiquitinating enzyme; MAP1LC3B-II/LC3B-II: microtubule associated protein 1 light chain 3 beta-II; MOI: multiplicity of infection; RIPK1: receptor interacting protein kinase 1; RIPK3: receptor interacting protein kinase 3; <i>S. aureus</i>: <i>Staphylococcus aureus</i>.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-03DOI: 10.1080/15548627.2025.2482516
Benjamin Bone, Luke Griffith, Matthew Jefferson, Yohei Yamauchi, Thomas Wileman, Penny P Powell
{"title":"ATG16L1 WD domain and linker regulates lipid trafficking to maintain plasma membrane integrity to limit influenza virus infection.","authors":"Benjamin Bone, Luke Griffith, Matthew Jefferson, Yohei Yamauchi, Thomas Wileman, Penny P Powell","doi":"10.1080/15548627.2025.2482516","DOIUrl":"10.1080/15548627.2025.2482516","url":null,"abstract":"<p><p>The non-canonical functions of autophagy protein ATG16L1 are dependent on a C-terminal WD domain. Recent studies show that the WD domain is required for conjugation of LC3 to single membranes during endocytosis and phagocytosis, where it is thought to promote fusion with lysosomes. Studies in cells lacking the WD domain suggest additional roles in the regulation of cytokine receptor recycling and plasma membrane repair. The WD domain also protects mice against lethal influenza virus <i>in vivo</i>. Here, analysis of mice lacking the WD domain (ΔWD) shows enrichment of cholesterol in brain tissue suggesting a role for the WD domain in cholesterol transport. Brain tissue and cells from ΔWD mice showed reduced cholesterol and phosphatidylserine (PS) in the plasma membrane. Cells from ΔWD mice also showed an intracellular accumulation of cholesterol predominantly in late endosomes. Infection studies using IAV suggest that the loss of cholesterol and PS from the plasma membrane in cells from ΔWD mice results in increased endocytosis and nuclear delivery of IAV, as well as increased <i>Ifnb</i>/<i>Ifnβ</i> and <i>Isg15</i> gene expression. Upregulation of <i>Il6</i>, <i>Ifnb</i> and <i>Isg15</i> mRNA were observed in \"ex vivo\" precision cut lung slices from ΔWD mice both at rest and in response to IAV infection. Overall, we present evidence that regulation of lipid transport by the WD domain of ATG16L1 may have downstream implications in attenuating viral infection and limiting lethal cytokine signaling.<b>Abbreviations</b>: BMDM: bone marrow-derived macrophages, CASM: conjugation of ATG8 to single membranes, CCD: coil-coil domain, IAV: influenza virus A, IFIT1: interferon-induced protein with tetratricopeptide repeats 1, IFITM3: interferon induced transmembrane protein 3, IFN: interferon, ISG15: ISG15 ubiquitin-like modifier, LANDO: LC3-associated endocytosis, LAP: LC3-associated phagocytosis, LDL: low density lipoprotein, NP: nucleoprotein, PS: phosphatidylserine, WD: WD40-repeat-containing C-terminal domain, WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143722982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EPG-5 regulates TGFB/TGF-β and WNT signalling by modulating retrograde endocytic trafficking.","authors":"Chongzhen Yuan, Huachuan Dong, Chunyan Wu, Jinyang Liu, Zheng Wang, Xingwei Wang, Haiyan Ren, Zhaoyu Wang, Qun Lu","doi":"10.1080/15548627.2025.2485420","DOIUrl":"10.1080/15548627.2025.2485420","url":null,"abstract":"<p><p>The Vici syndrome protein EPG5 acts as a tethering factor determining the fusion specificity of autophagosomes with late endosomes/lysosomes. Here we demonstrated that during <i>C. elegans</i> development, EPG-5 modulates SMA and MAB TGFB/TGF-β signaling in controlling body size and also WNT signaling in regulating cell migration. EPG-5 is required for retrograde trafficking of the TGFB receptor SMA-6 and WLS/Wntless homolog MIG-14. In <i>epg-5</i> mutants, SMA-6 and MIG-14 are trapped within hybrid endosomal structures, which colocalize with SNX-1- and SNX-3-labeled vesicles, respectively. Basolateral recycling processes of transmembrane cargos H.s.TFR/hTfR and H.s.IL2RA/hTAC are also defective in <i>epg-5</i> mutants. Depletion of EPG-5 causes defective RAB-5 and RAB-7, and RAB-5 and RAB-10 conversion, leading to the formation of these hybrid vesicles. The defects in endocytic trafficking and autophagy in <i>epg-5</i> mutants are ameliorated by knocking down components of the HOPS complex. Our study demonstrates the intersection between the autophagy pathway and the endocytic pathway, providing insights into the pathogenesis of amyotrophic lateral sclerosis (ALS) and Vici syndrome.<b>Abbreviations:</b> ALM: anterior lateral microtubule; ATG: autophagy related; AVM: anterior ventral microtubule; CORVET: class C core vacuole/endosome tethering; DAF-4: abnormal dauer formation 4; DIC: differential interference contrast; EPG: ectopic PGL granules; EPG-5: ectopic P granules 5; GAP: GTPase activating protein; GFP: green fluorescent protein; HOPS: homotypic fusion and vacuole protein sorting; H.s.IL2RA/hTAC: human interleukin 2 receptor subunit alpha; H.s.TFR/hTfR: human transferrin receptor; L1/L4: the first/fourth larval; mCh: mCherry; MIG-14: abnormal cell migration 14; PLM: posterior lateral microtubule; PVM: posterior ventral microtubule; RAB: ras-related protein; RFP: red fluorescent protein; RME-1: receptor mediated endocytosis 1; SMA-6: small 6; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SNX: sorting nexin; TBC-2: TBC1 (Tre-2/Bub2/Cdc16) domain family 2; TGFB/TGF-β: transforming growth factor beta; TGN: trans-Golgi network; VPS: related to yeast vacuolar protein sorting factor; WT: wild type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-02DOI: 10.1080/15548627.2025.2482724
Xiaoli Ma, Xiaomeng Gou, Hong Zhang
{"title":"T16G12.6/IMPORTIN 13-mediated cytoplasm-to-nucleus transport of the THAP transcription factor LIN-15B controls autophagy and lysosome function in <i>C. elegans</i>.","authors":"Xiaoli Ma, Xiaomeng Gou, Hong Zhang","doi":"10.1080/15548627.2025.2482724","DOIUrl":"10.1080/15548627.2025.2482724","url":null,"abstract":"<p><p>Transcriptional regulation of genes involved in the macroautophagy/autophagy-lysosome pathway acts as an important mechanism for controlling autophagy activity. The factors that globally regulate autophagy activity at the transcriptional level during <i>C. elegans</i> development remain unknown. Here we showed that the THAP domain-containing transcription factor LIN-15B modulates autophagy activity during <i>C. elegans</i> development. Loss of function of <i>lin-15B</i> suppresses the autophagy defect caused by impaired autophagosome maturation and promotes lysosome biogenesis and function. LIN-15B maintains the repressed state of genes involved in the autophagy pathway. Accordingly, loss of function of <i>lin-15B</i> upregulates a plethora of genes involved in autophagosome formation and maturation as well as lysosome biogenesis and function. The cytoplasm-to-nucleus translocation of LIN-15B is mediated by the T16G12.6/IMPORTIN 13/IPO-13 receptor and modulated by nutrient status. Our study uncovers that LIN-15B integrates environmental cues into transcriptional control of a network of genes involved in autophagy in <i>C. elegans</i>.<b>Abbreviations:</b> ATG: autophagy related; DIC: differential interference contrast; EPG: ectopic PGL granules; ER: endoplasmic reticulum; FOXO: forkhead box O; GFP: green fluorescent protein; SQST-1: SeQueSTosome related 1; SynMuv: synthetic multivulva; IPO-13: importin 13; TFEB: transcription factor EB.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143702500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-01Epub Date: 2024-12-12DOI: 10.1080/15548627.2024.2437908
Chih-Yao Chung, Kritarth Singh, Preethi Sheshadri, Gabriel E Valdebenito, Anitta R Chacko, María Alicia Costa Besada, Xiao Fei Liang, Lida Kabir, Robert D S Pitceathly, Gyorgy Szabadkai, Michael R Duchen
{"title":"Inhibition of the PI3K-AKT-MTORC1 axis reduces the burden of the m.3243A>G mtDNA mutation by promoting mitophagy and improving mitochondrial function.","authors":"Chih-Yao Chung, Kritarth Singh, Preethi Sheshadri, Gabriel E Valdebenito, Anitta R Chacko, María Alicia Costa Besada, Xiao Fei Liang, Lida Kabir, Robert D S Pitceathly, Gyorgy Szabadkai, Michael R Duchen","doi":"10.1080/15548627.2024.2437908","DOIUrl":"10.1080/15548627.2024.2437908","url":null,"abstract":"<p><p>Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans. We have previously shown that the mutation is associated with constitutive activation of the PI3K-AKT-MTORC1 axis. Inhibition of this pathway in patient fibroblasts reduced the mutant load, rescued mitochondrial bioenergetic function and reduced glucose dependence. We have now investigated the mechanisms that select against the mutant mtDNA under these conditions. Basal macroautophagy/autophagy and lysosomal degradation of mitochondria were suppressed in the mutant cells. Pharmacological inhibition of any step of the PI3K-AKT-MTORC1 pathway activated mitophagy and progressively reduced m.3243A>G mutant load over weeks. Inhibition of autophagy with bafilomycin A<sub>1</sub> or chloroquine prevented the reduction in mutant load, suggesting that mitophagy was necessary to remove the mutant mtDNA. Inhibition of the pathway was associated with metabolic remodeling - mitochondrial membrane potential and respiratory rate improved even before a measurable fall in mutant load and proved crucial for mitophagy. Thus, maladaptive activation of the PI3K-AKT-MTORC1 axis and impaired autophagy play a major role in shaping the presentation and progression of disease caused by the m.3243A>G mutation. Our findings highlight a potential therapeutic target for this otherwise intractable disease.<b>Abbreviation</b>: ΔΨ<sub>m</sub>: mitochondrial membrane potential; 2DG: 2-deoxy-D-glucose; ANOVA: analysis of variance; ARMS-qPCR: amplification-refractory mutation system quantitative polymerase chain reaction; Baf A1: bafilomycin A<sub>1</sub>; BSA: bovine serum albumin; CQ: chloroquine; Cybrid: cytoplasmic hybrid; CYCS: cytochrome c, somatic; DCA: dichloroacetic acid; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethylsulfoxide; EGFP: enhanced green fluorescent protein; LC3B-I: carboxy terminus cleaved microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated microtubule-associated protein 1 light chain 3 beta; LY: LY290042; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MFC: mitochondrial fragmentation count; mt-Keima: mitochondrial-targeted mKeima; mtDNA: mitochondrial DNA/mitochondrial genome; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OA: oligomycin+antimycin A; OxPhos: oxidative phosphorylation; DPBS: Dulbecco's phosphate-buffered saline; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PPARGC1B/PGC-1β: PPARG coactivator 1 beta; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; qPCR: quantitative polymerase chain reaction; RNA-seq: RNA sequencing; RP: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; WT: wild-type.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"881-896"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925111/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AutophagyPub Date : 2025-04-01DOI: 10.1080/15548627.2025.2483441
Jiong Yan, Xin Chen, Swati Choksi, Zheng-Gang Liu
{"title":"TGFB signaling induces mitophagy via PLSCR3-mediated cardiolipin externalization in conjunction with a BNIP3L/NIX-, BNIP3-, and FUNDC1-dependent mechanism.","authors":"Jiong Yan, Xin Chen, Swati Choksi, Zheng-Gang Liu","doi":"10.1080/15548627.2025.2483441","DOIUrl":"10.1080/15548627.2025.2483441","url":null,"abstract":"<p><p>Selective clearance of damaged mitochondria through mitophagy is crucial for the maintenance of mitochondrial homeostasis. While mitophagy can be activated by various mitochondrial toxins, the physiologically relevant signal that triggers mitophagy is less studied. TGFB/TGFβ signaling has been linked to autophagic induction, but its specific role in mitophagy is not well understood. Here, we discovered a novel mitophagy induction paradigm stimulated by TGFB1. The mitophagic response is exclusively mediated by SMAD2, SMAD3, and SMAD4 underlying the TGFB receptor signaling. The transcriptional regulation activates genes involved in the canonical autophagic pathway which is required for the TGFB1-induced mitophagy. Moreover, TGFB1 signaling promotes mitophagic flux by upregulating PLSCR3 that externalizes cardiolipin in conjunction with the MAP1LC3/LC3/GABARAPs-interacting receptor proteins (BNIP3L/NIX, BNIP3, and FUNDC1)-dependent mechanism. Overall, our study characterized the essential components engaged in the TGFB1-induced mitophagy and demonstrated that TGFB is an important signal that induces mitophagy.<b>Abbreviations</b> ATG5: autophagy related 5; ATG8: mammalian homolog of yeast Atg8; ATG9A: autophagy related 9A; ATG13: autophagy related 13; ATG101: autophagy related 101; BNIP3: BCL2 interacting protein 3; BNIP3L/NIX: BCL2 interacting protein 3 like; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; Cardiolipin: 1,3-bis(<i>sn</i>-3'-phosphatidyl)-<i>sn</i>-glycerol; CERS1: ceramide synthase 1; FUNDC1: FUN14 domain containing 1; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor-associated protein like 1; GABARAPL2: GABA type A receptor-associated protein like 2; GLS: glutaminase; KO: knockout; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MitoIP: mitochondrial immunoprecipitation; MMP: mitochondrial membrane potential; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; PINK1: PTEN induced kinase 1; PLSCR3: phospholipid scramblase 3; PRKN: parkin RBR E3 ubiquitin protein ligase; RB1CC1/FIP200: RB1 inducible coiled-coil 1; TGFB/TGFβ: transforming growth factor beta; ULK1: unc-51 like autophagy activating kinase 1.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143677458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"USP4 depletion-driven RAB7A ubiquitylation impairs autophagosome-lysosome fusion and aggravates periodontitis.","authors":"Sen Kang, Shuxin Liu, Xian Dong, Haoyu Li, Yuanyi Qian, Anna Dai, Wentao He, Xiaojun Li, Qianming Chen, Huiming Wang, Pei-Hui Ding","doi":"10.1080/15548627.2024.2429371","DOIUrl":"10.1080/15548627.2024.2429371","url":null,"abstract":"<p><p>Periodontitis, a prevalent and chronic inflammatory disease, is intricately linked with macroautophagy/autophagy, which has a dual role in maintaining periodontal homeostasis. Despite its importance, the precise interplay between autophagy and periodontitis pathogenesis remains to be fully elucidated. In this study, our investigation revealed that the ubiquitination of RAB7A, mediated by reduced levels of the deubiquitinating enzyme USP4 (ubiquitin specific peptidase 4), disrupts normal lysosomal trafficking and autophagosome-lysosome fusion, thereby contributing significantly to periodontitis progression. Specifically, through genomic and histological analysis of clinical gingival samples, we observed a decreased RAB7A expression and impaired autophagic activity in periodontitis. This was further substantiated through experimental periodontitis mice, where RAB7A inactivation was shown to directly affect autophagy efficiency and drive periodontitis progression. Next, we explored the function of active RAB7A to promote lysosomal trafficking dynamics and autophagosome-lysosome fusion, which was inhibited by RAB7A ubiquitination in macrophages stimulated by <i>Porphyromonas gingivalis</i> (<i>P. g</i>.), one of the keystone pathogens of periodontitis. Last, by proteomics analysis, we revealed that the ubiquitination of RAB7A was mediated by USP4 and validated that upregulation of USP4 could attenuate periodontitis in vivo. In conclusion, these findings highlight the interaction between USP4 and RAB7A as a promising target for therapeutic intervention in managing periodontal diseases.<b>Abbreviation:</b> 3-MA: 3-methyladenine; Baf A1:bafilomycin A<sub>1</sub>; BECN1: beclin 1, autophagy related; CEJ-ABC: cementoenamel junctionto alveolar bone crest; IL1B/IL-1β: interleukin 1 beta; KD:knockdown; LPS: lipopolysaccharide; MOI: multiplicity of infection;OE: overexpression; <i>P.g</i>.: <i>Porphyromonasgingivalis</i>; RILP: Rabinteracting lysosomal protein; ScRNA-seq: single-cell RNA sequencing; SQSTM1/p62: sequestosome 1; <i>S.s</i>.: <i>Streptococcus sanguinis</i>; USP4:ubiquitin specific peptidase 4.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"771-788"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}