Ye Guo, Zhiru Bao, Meiyan Shi, Qiwei Zheng, Yawen Huo, Ran Hu, Yajie Guan, Saiyu Cao, Patrick J Hussey, Xiuxin Deng, Yunjiang Cheng, Pengwei Wang
{"title":"自噬在叶绿体转化和降解中起着双重作用,对果实着色和成熟至关重要。","authors":"Ye Guo, Zhiru Bao, Meiyan Shi, Qiwei Zheng, Yawen Huo, Ran Hu, Yajie Guan, Saiyu Cao, Patrick J Hussey, Xiuxin Deng, Yunjiang Cheng, Pengwei Wang","doi":"10.1080/15548627.2025.2509330","DOIUrl":null,"url":null,"abstract":"<p><p>The color of tomato fruits is determined by carotenoids. The process involves removing chloroplast-related components and the biogenesis of chromoplast membranes where carotenoids are stored, but how these events are coordinated is unknown. Here, we demonstrated that part of this mechanism involves macroautophagy/autophagy playing dual roles in chromoplast transition and degradation. We have used fluorescence lifetime imaging microscopy (FLIM) to show that autophagosomes containing chloroplast-derived-vesicles increased significantly during early fruit ripening, which is an essential part of a pathway to the formation of chromoplasts. Interestingly, we also showed that autophagy controls the degradation of the chromoplasts containing carotenoids at the late ripening stage through a process we named chromophagy. This affects fruit color and ABA levels, which were higher in autophagy mutants with a slower turnover of chromoplasts. We concluded that autophagy is a determinant of both fruit coloration and ripening through degrading different plastid-related cargo.<b>Abbreviation</b>: ABA: abscisic acid; ATG: autophagy related; AP: autophagosome; BR: breaker stage; BR + 3: 3 days after breaker stage; BR + 7: 7 days after breaker stage; CV: coefficient of variation; FLIM: fluorescence lifetime imaging microscopy; IG: immature green; LR: light red; MG: mature green; PDVs: plastid-derived-vesicles; RhB: rhodamine B; RNAi: RNA interference; RR: ripe red; TEM: transmission electron microscopy; WLL: white-light laser.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autophagy plays a dual role in chromoplast transition and degradation and is essential for fruit coloration and ripening.\",\"authors\":\"Ye Guo, Zhiru Bao, Meiyan Shi, Qiwei Zheng, Yawen Huo, Ran Hu, Yajie Guan, Saiyu Cao, Patrick J Hussey, Xiuxin Deng, Yunjiang Cheng, Pengwei Wang\",\"doi\":\"10.1080/15548627.2025.2509330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The color of tomato fruits is determined by carotenoids. The process involves removing chloroplast-related components and the biogenesis of chromoplast membranes where carotenoids are stored, but how these events are coordinated is unknown. Here, we demonstrated that part of this mechanism involves macroautophagy/autophagy playing dual roles in chromoplast transition and degradation. We have used fluorescence lifetime imaging microscopy (FLIM) to show that autophagosomes containing chloroplast-derived-vesicles increased significantly during early fruit ripening, which is an essential part of a pathway to the formation of chromoplasts. Interestingly, we also showed that autophagy controls the degradation of the chromoplasts containing carotenoids at the late ripening stage through a process we named chromophagy. This affects fruit color and ABA levels, which were higher in autophagy mutants with a slower turnover of chromoplasts. We concluded that autophagy is a determinant of both fruit coloration and ripening through degrading different plastid-related cargo.<b>Abbreviation</b>: ABA: abscisic acid; ATG: autophagy related; AP: autophagosome; BR: breaker stage; BR + 3: 3 days after breaker stage; BR + 7: 7 days after breaker stage; CV: coefficient of variation; FLIM: fluorescence lifetime imaging microscopy; IG: immature green; LR: light red; MG: mature green; PDVs: plastid-derived-vesicles; RhB: rhodamine B; RNAi: RNA interference; RR: ripe red; TEM: transmission electron microscopy; WLL: white-light laser.</p>\",\"PeriodicalId\":93893,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2025.2509330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2509330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autophagy plays a dual role in chromoplast transition and degradation and is essential for fruit coloration and ripening.
The color of tomato fruits is determined by carotenoids. The process involves removing chloroplast-related components and the biogenesis of chromoplast membranes where carotenoids are stored, but how these events are coordinated is unknown. Here, we demonstrated that part of this mechanism involves macroautophagy/autophagy playing dual roles in chromoplast transition and degradation. We have used fluorescence lifetime imaging microscopy (FLIM) to show that autophagosomes containing chloroplast-derived-vesicles increased significantly during early fruit ripening, which is an essential part of a pathway to the formation of chromoplasts. Interestingly, we also showed that autophagy controls the degradation of the chromoplasts containing carotenoids at the late ripening stage through a process we named chromophagy. This affects fruit color and ABA levels, which were higher in autophagy mutants with a slower turnover of chromoplasts. We concluded that autophagy is a determinant of both fruit coloration and ripening through degrading different plastid-related cargo.Abbreviation: ABA: abscisic acid; ATG: autophagy related; AP: autophagosome; BR: breaker stage; BR + 3: 3 days after breaker stage; BR + 7: 7 days after breaker stage; CV: coefficient of variation; FLIM: fluorescence lifetime imaging microscopy; IG: immature green; LR: light red; MG: mature green; PDVs: plastid-derived-vesicles; RhB: rhodamine B; RNAi: RNA interference; RR: ripe red; TEM: transmission electron microscopy; WLL: white-light laser.