The pathway of autophagy in the epigenetic landscape of Mycobacterium-host interactions.

Abhishek Mishra, Varsha Rawat, Kangling Zhang, Chinnaswamy Jagannath
{"title":"The pathway of autophagy in the epigenetic landscape of <i>Mycobacterium</i>-host interactions.","authors":"Abhishek Mishra, Varsha Rawat, Kangling Zhang, Chinnaswamy Jagannath","doi":"10.1080/15548627.2025.2511074","DOIUrl":null,"url":null,"abstract":"<p><p>Macroautophagy (autophagy) is an evolutionarily conserved process that degrades excess cytoplasmic components, such as protein aggregates and damaged organelles, by encapsulating them within double-membrane autophagosomes. These autophagosomes undergo distinct stages - initiation, phagophore nucleation, expansion, and closure - before fusing with lysosomes (or occasionally endosomes) for degradation and recycling. This process is regulated by ATG (autophagy related) proteins, which govern autophagosome formation and lysosomal fusion. Epigenetic modifications and transcription factors can regulate <i>ATG</i> gene expression in the nucleus. Autophagy also plays a key role in eliminating intracellular <i>Mycobacterium tuberculosis</i> (<i>Mtb</i>) through the lytic and antimicrobial activities of autolysosomes, which are more potent antimicrobial compartments than conventional phagosomes. Emerging evidence suggests that <i>Mtb</i> can modify the host epigenome and transcriptional machinery, significantly affecting the host immune response. This review explores the epigenetic regulation of autophagy during mycobacterium-host interactions. The interplay between epigenetic regulation and autophagy highlights a crucial aspect of host-pathogen interactions during <i>Mtb</i> infection. Understanding how <i>Mtb</i> manipulates the host epigenome to regulate autophagy could lead to the development of novel therapeutic strategies that enhance autophagic pathways or counteract <i>Mtb's</i> immune evasion tactics.<b>Abbreviations</b>: AM: Alveolar macrophages; ATG: autophagy related; DNMT: DNA methyltransferase; FOXO3: forkhead box O3; HAT: histone acetyltransferase; HDAC: histone deacetylase; MIR: microRNA; MTOR: mechanistic target of rapamycin kinase; <i>Mtb</i>: Mycobacterium tuberculosis; ROS: reactive oxygen species; SIRT: sirtuin; STPK: serine/threonine protein kinase.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2511074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Macroautophagy (autophagy) is an evolutionarily conserved process that degrades excess cytoplasmic components, such as protein aggregates and damaged organelles, by encapsulating them within double-membrane autophagosomes. These autophagosomes undergo distinct stages - initiation, phagophore nucleation, expansion, and closure - before fusing with lysosomes (or occasionally endosomes) for degradation and recycling. This process is regulated by ATG (autophagy related) proteins, which govern autophagosome formation and lysosomal fusion. Epigenetic modifications and transcription factors can regulate ATG gene expression in the nucleus. Autophagy also plays a key role in eliminating intracellular Mycobacterium tuberculosis (Mtb) through the lytic and antimicrobial activities of autolysosomes, which are more potent antimicrobial compartments than conventional phagosomes. Emerging evidence suggests that Mtb can modify the host epigenome and transcriptional machinery, significantly affecting the host immune response. This review explores the epigenetic regulation of autophagy during mycobacterium-host interactions. The interplay between epigenetic regulation and autophagy highlights a crucial aspect of host-pathogen interactions during Mtb infection. Understanding how Mtb manipulates the host epigenome to regulate autophagy could lead to the development of novel therapeutic strategies that enhance autophagic pathways or counteract Mtb's immune evasion tactics.Abbreviations: AM: Alveolar macrophages; ATG: autophagy related; DNMT: DNA methyltransferase; FOXO3: forkhead box O3; HAT: histone acetyltransferase; HDAC: histone deacetylase; MIR: microRNA; MTOR: mechanistic target of rapamycin kinase; Mtb: Mycobacterium tuberculosis; ROS: reactive oxygen species; SIRT: sirtuin; STPK: serine/threonine protein kinase.

分枝杆菌-宿主相互作用的表观遗传景观中的自噬途径。
巨噬(autophagy)是一种进化上保守的过程,通过将多余的细胞质成分(如蛋白质聚集体和受损的细胞器)包裹在双膜自噬体中来降解它们。这些自噬体在与溶酶体(或偶尔的核内体)融合降解和再循环之前经历不同的阶段——起始、吞噬细胞成核、扩张和关闭。这一过程由ATG(自噬相关蛋白)调节,ATG控制自噬体的形成和溶酶体融合。表观遗传修饰和转录因子可调控ATG基因在细胞核中的表达。自噬也在消灭细胞内结核分枝杆菌(Mtb)中发挥关键作用,通过自噬酶体的裂解和抗菌活性,自噬酶体是比传统吞噬体更有效的抗菌室。越来越多的证据表明,结核分枝杆菌可以改变宿主的表观基因组和转录机制,显著影响宿主的免疫反应。本文综述了分枝杆菌-宿主相互作用过程中自噬的表观遗传调控。表观遗传调控和自噬之间的相互作用突出了结核分枝杆菌感染过程中宿主-病原体相互作用的一个重要方面。了解结核分枝杆菌如何操纵宿主表观基因组来调节自噬可能会导致新的治疗策略的发展,这些策略可以增强自噬途径或抵消结核分枝杆菌的免疫逃避策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信