R406 and its structural analogs reduce SNCA/α-synuclein levels via autophagic degradation.

Chao Zhong, Xiaoge Gao, Qi Chen, Bowen Guan, Wanli Wu, Zhiqiang Ma, Mengdan Tao, Xihuan Liu, Yu Ding, Yiyan Fei, Yan Liu, Boxun Lu, Zhaoyang Li
{"title":"R406 and its structural analogs reduce SNCA/α-synuclein levels via autophagic degradation.","authors":"Chao Zhong, Xiaoge Gao, Qi Chen, Bowen Guan, Wanli Wu, Zhiqiang Ma, Mengdan Tao, Xihuan Liu, Yu Ding, Yiyan Fei, Yan Liu, Boxun Lu, Zhaoyang Li","doi":"10.1080/15548627.2025.2483886","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of neuronal Lewy bodies mainly composed of SNCA/α-synuclein aggregations is a pathological feature of Parkinson disease (PD), whereas reducing SNCA protein levels may slow the progression of this disease. We hypothesized that compounds enhancing SNCA's interaction with MAP1LC3/LC3 May increase its macroautophagic/autophagic degradation. Here, we conducted small molecule microarray (SMM)-based screening to identify such compounds and revealed that the compound R406 could decrease SNCA protein levels in an autophagy-dependent manner. We further validated the proposed mechanism, in which knockdown of essential gene <i>ATG5</i> for autophagy formation and using the autophagy inhibitor chloroquine (CQ) blocked the effect of R406. Additionally, R406 also reduced the levels of phosphorylated serine 129 of SNCA (p-S129-SNCA) in SNCA preformed fibrils (PFFs)-induced cellular models and rescued neuron degeneration. Importantly, we confirmed that R406 could alleviate PD-relevant disease phenotypes in human SNCA PFFs-induced cellular models and PD patient-derived organoid models. Taken together, we demonstrated the possibility of lowering SNCA levels by enhancing its autophagic degradation by compounds increasing SNCA-LC3 interactions.<b>Abbreviations</b>: ATTEC: autophagy-tethering compounds; BafA1: bafilomycin A<sub>1</sub>; BiFC: bimolecular fluorescence complementation; CQ: chloroquine; hMOs: human midbrain organoids; iPSC: induced pluripotent stem cells; MBP: maltose-binding protein; mHTT: mutant huntingtin; OI-RD: oblique-incidence reflectivity difference; PFFs: preformed fibrils; p-S129-SNCA: phosphorylated serine 129 of SNCA; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SMM: small molecule microarray; SNCA: synuclein alpha; SYK: spleen associated tyrosine kinase.</p>","PeriodicalId":93893,"journal":{"name":"Autophagy","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15548627.2025.2483886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of neuronal Lewy bodies mainly composed of SNCA/α-synuclein aggregations is a pathological feature of Parkinson disease (PD), whereas reducing SNCA protein levels may slow the progression of this disease. We hypothesized that compounds enhancing SNCA's interaction with MAP1LC3/LC3 May increase its macroautophagic/autophagic degradation. Here, we conducted small molecule microarray (SMM)-based screening to identify such compounds and revealed that the compound R406 could decrease SNCA protein levels in an autophagy-dependent manner. We further validated the proposed mechanism, in which knockdown of essential gene ATG5 for autophagy formation and using the autophagy inhibitor chloroquine (CQ) blocked the effect of R406. Additionally, R406 also reduced the levels of phosphorylated serine 129 of SNCA (p-S129-SNCA) in SNCA preformed fibrils (PFFs)-induced cellular models and rescued neuron degeneration. Importantly, we confirmed that R406 could alleviate PD-relevant disease phenotypes in human SNCA PFFs-induced cellular models and PD patient-derived organoid models. Taken together, we demonstrated the possibility of lowering SNCA levels by enhancing its autophagic degradation by compounds increasing SNCA-LC3 interactions.Abbreviations: ATTEC: autophagy-tethering compounds; BafA1: bafilomycin A1; BiFC: bimolecular fluorescence complementation; CQ: chloroquine; hMOs: human midbrain organoids; iPSC: induced pluripotent stem cells; MBP: maltose-binding protein; mHTT: mutant huntingtin; OI-RD: oblique-incidence reflectivity difference; PFFs: preformed fibrils; p-S129-SNCA: phosphorylated serine 129 of SNCA; PD: Parkinson disease; ROS: reactive oxygen species; siRNA: small interfering RNA; SMM: small molecule microarray; SNCA: synuclein alpha; SYK: spleen associated tyrosine kinase.

R406及其结构类似物通过自噬降解降低SNCA/α-突触核蛋白水平。
主要由SNCA/α-突触核蛋白聚集组成的神经元路易小体的存在是帕金森病(PD)的病理特征,而降低SNCA蛋白水平可能会减缓这种疾病的进展。我们假设,增强SNCA与MAP1LC3/LC3相互作用的化合物可能会增加其巨噬/自噬降解。在这里,我们进行了基于小分子微阵列(SMM)的筛选来鉴定这些化合物,发现化合物R406可以以自噬依赖的方式降低SNCA蛋白水平。我们进一步验证了提出的机制,其中自噬形成必需基因ATG5的敲除和自噬抑制剂氯喹(CQ)阻断了R406的作用。此外,R406还降低了SNCA预形成原纤维(PFFs)诱导的细胞模型中SNCA磷酸化丝氨酸129 (p-S129-SNCA)的水平,并挽救了神经元变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信