BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-02004-x
Jinyu Zhu, Jingheng Chen, Yiran Liu, Xuejiao Xu, Jackson Champer
{"title":"Population suppression with dominant female-lethal alleles is boosted by homing gene drive","authors":"Jinyu Zhu, Jingheng Chen, Yiran Liu, Xuejiao Xu, Jackson Champer","doi":"10.1186/s12915-024-02004-x","DOIUrl":"https://doi.org/10.1186/s12915-024-02004-x","url":null,"abstract":"Methods to suppress pest insect populations using genetic constructs and repeated releases of male homozygotes have recently been shown to be an attractive alternative to older sterile insect techniques based on radiation. Female-specific lethal alleles have substantially increased power, but still require large, sustained transgenic insect releases. Gene drive alleles bias their own inheritance to spread throughout populations, potentially allowing population suppression with a single, small-size release. However, suppression drives often suffer from efficiency issues, and the most well-studied type, homing drives, tend to spread without limit. In this study, we show that coupling female-specific lethal alleles with homing gene drive allowed substantial improvement in efficiency while still retaining the self-limiting nature (and thus confinement) of a lethal allele strategy. Using a mosquito model, we show the required release sizes for population elimination in a variety of scenarios, including different density growth curves, with comparisons to other systems. Resistance alleles reduced the power of this method, but these could be overcome by targeting an essential gene with the drive while also providing rescue. A proof-of-principle demonstration of this system in Drosophila melanogaster was effective in both biasing its inheritance and achieving high lethality among females that inherit the construct in the absence of antibiotic. Overall, our study shows that substantial improvements can be achieved in female-specific lethal systems for population suppression by combining them with various types of gene drive.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"32 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FgCWM1 modulates TaNDUFA9 to inhibit SA synthesis and reduce FHB resistance in wheat","authors":"Yazhou Zhang, Danyu Yao, Xinyu Yu, Xinyao Cheng, Lan Wen, Caihong Liu, Qiang Xu, Mei Deng, Qiantao Jiang, Pengfei Qi, Yuming Wei","doi":"10.1186/s12915-024-02007-8","DOIUrl":"https://doi.org/10.1186/s12915-024-02007-8","url":null,"abstract":"Fusarium head blight (FHB) significantly impacts wheat yield and quality. Understanding the intricate interaction mechanisms between Fusarium graminearum (the main pathogen of FHB) and wheat is crucial for developing effective strategies to manage and this disease. Our previous studies had shown that the absence of the cell wall mannoprotein FgCWM1, located at the outermost layer of the cell wall, led to a decrease in the pathogenicity of F. graminearum and induced the accumulation of salicylic acid (SA) in wheat. Hence, we propose that FgCWM1 may play a role in interacting between F. graminearum and wheat, as its physical location facilitates interaction effects. In this study, we have identified that the C-terminal region of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 (NDUFA9) could interact with FgCWM1 through the yeast two-hybrid assay. The interaction was further confirmed through the combination of Co-IP and BiFC analyses. Consistently, the results of subcellular localization indicated that TaNDUFA9 was localized in the cytoplasm adjacent to the cell membrane and chloroplasts. The protein was also detected to be associated with mitochondria and positively regulated complex I activity. The loss-of-function mutant of TaNDUFA9 exhibited a delay in flowering, decreased seed setting rate, and reduced pollen fertility. However, it exhibited elevated levels of SA and increased resistance to FHB caused by F. graminearum infection. Meanwhile, inoculation with the FgCWM1 deletion mutant strain led to increased synthesis of SA in wheat. These findings suggest that TaNDUFA9 inhibits SA synthesis and FHB resistance in wheat. FgCWM1 enhances this inhibition by interacting with the C-terminal region of TaNDUFA9, ultimately facilitating F. graminearum infection in wheat. This study provides new insights into the interaction mechanism between F. graminearum and wheat. TaNDUFA9 could serve as a target gene for enhancing wheat resistance to FHB.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"9 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-cell RNA-seq analysis of rat molars reveals cell identity and driver genes associated with dental mesenchymal cell differentiation","authors":"Yingchun Zheng, Ting Lu, Leitao Zhang, Zhongzhi Gan, Aoxi Li, Chuandong He, Fei He, Sha He, Jian Zhang, Fu Xiong","doi":"10.1186/s12915-024-01996-w","DOIUrl":"https://doi.org/10.1186/s12915-024-01996-w","url":null,"abstract":"The molecular mechanisms and signaling pathways involved in tooth morphogenesis have been the research focus in the fields of tooth and bone development. However, the cell population in molars at the late bell stage and the mechanisms of hard tissue formation and mineralization remain limited knowledge. Here, we used the rat mandibular first and second molars as models to perform single-cell RNA sequencing (scRNA-seq) analysis to investigate cell identity and driver genes related to dental mesenchymal cell differentiation during the late bell hard tissue formation stage. We identified seven main cell types and investigated the heterogeneity of mesenchymal cells. Subsequently, we identified novel cell marker genes, including Pclo in dental follicle cells, Wnt10a in pre-odontoblasts, Fst and Igfbp2 in periodontal ligament cells, and validated the expression of Igfbp3 in the apical pulp. The dynamic model revealed three differentiation trajectories within mesenchymal cells, originating from two types of dental follicle cells and apical pulp cells. Apical pulp cell differentiation is associated with the genes Ptn and Satb2, while dental follicle cell differentiation is associated with the genes Tnc, Vim, Slc26a7, and Fgfr1. Cluster-specific regulons were analyzed by pySCENIC. In addition, the odontogenic function of driver gene TNC was verified in the odontoblastic differentiation of human dental pulp stem cells. The expression of osteoclast differentiation factors was found to be increased in macrophages of the mandibular first molar. Our results revealed the cell heterogeneity of molars in the late bell stage and identified driver genes associated with dental mesenchymal cell differentiation. These findings provide potential targets for diagnosing dental hard tissue diseases and tooth regeneration.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"11 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-01999-7
Zheng Yang, Menglei Wang, Senmiao Fan, Zhen Zhang, Doudou Zhang, Jie He, Tongyi Li, Renhui Wei, Panpan Wang, Muhammad Dawood, Weijie Li, Lin Wang, Shaogan Wang, Youlu Yuan, Haihong Shang
{"title":"GhPME36 aggravates susceptibility to Liriomyza sativae by affecting cell wall biosynthesis in cotton leaves","authors":"Zheng Yang, Menglei Wang, Senmiao Fan, Zhen Zhang, Doudou Zhang, Jie He, Tongyi Li, Renhui Wei, Panpan Wang, Muhammad Dawood, Weijie Li, Lin Wang, Shaogan Wang, Youlu Yuan, Haihong Shang","doi":"10.1186/s12915-024-01999-7","DOIUrl":"https://doi.org/10.1186/s12915-024-01999-7","url":null,"abstract":"Cotton is an important economic crop and a host of Liriomyza sativae. Pectin methylesterase (PME)-mediated pectin metabolism plays an indispensable role in multiple biological processes in planta. However, the pleiotropic functions of PME often lead to unpredictable effects on crop resistance to pests. Additionally, whether and how PME affects susceptibility to Liriomyza sativae remain unclear. Here, we isolated GhPME36, which is located in the cell wall, from upland cotton (Gossypium hirsutum L.). Interestingly, the overexpression of GhPME36 in cotton caused severe susceptibility to Liriomyza sativae but increased leaf biomass in Arabidopsis. Cytological observations revealed that the cell wall was thinner with more demethylesterified pectins in GhPME36-OE cotton leaves than in WT leaves, whereas the soluble sugar content of GhPME36-OE cotton leaf cell walls was accordingly higher; both factors attracted Liriomyza sativae to feed on GhPME36-OE cotton leaves. Metabolomic analysis demonstrated that glucose was significantly differentially accumulated. Transcriptomic analysis further revealed DEGs enriched in glucose metabolic pathways when GhPME36 was overexpressed, suggesting that GhPME36 aggravates susceptibility to Liriomyza sativae by affecting both the structure and components of cell wall biosynthesis. Moreover, GhPME36 interacts with another pectin-modifying enzyme, GhC/VIF1, to maintain the dynamic stability of pectin methyl esterification. Taken together, our results reveal the cytological and molecular mechanisms by which GhPME36 aggravates susceptibility to Liriomyza sativae. This study broadens the knowledge of PME function and provides new insights into plant resistance to pests and the safety of genetically modified plants.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"50 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-01998-8
Xiaoyan Zhu, Yi Yang, Qiuyao Li, Jing Li, Lin Du, Yanhan Zhou, Hongbo Jin, Liwen Song, Qi Chen, Bingzhong Ren
{"title":"An expanded odorant-binding protein mediates host cue detection in the parasitic wasp Baryscapus dioryctriae basis of the chromosome-level genome assembly analysis","authors":"Xiaoyan Zhu, Yi Yang, Qiuyao Li, Jing Li, Lin Du, Yanhan Zhou, Hongbo Jin, Liwen Song, Qi Chen, Bingzhong Ren","doi":"10.1186/s12915-024-01998-8","DOIUrl":"https://doi.org/10.1186/s12915-024-01998-8","url":null,"abstract":"Baryscapus dioryctriae (Chalcidodea: Eulophidae) is a parasitic wasp that parasitizes the pupae of many Pyralidae members and has been used as a biological control agent against Dioryctria pests of pinecones. This B. dioryctriae assembly has a genome size of 485.5 Mb with a contig N50 of 2.17 Mb, and scaffolds were assembled onto six chromosomes using Hi-C analysis, significantly increasing the scaffold N50 to 91.17 Mb, with more than 96.13% of the assembled bases located on chromosomes, and an analysis revealed that 94.73% of the BUSCO gene set. A total of 54.82% (279.27 Mb) of the assembly was composed of repetitive sequences and 24,778 protein-coding genes were identified. Comparative genomic analysis demonstrated that the chemosensory perception, genetic material synthesis, and immune response pathways were primarily enriched in the expanded genes. Moreover, the functional characteristics of an odorant-binding protein (BdioOBP45) with ovipositor-biased expression identified from the expanded olfactory gene families were investigated by the fluorescence competitive binding and RNAi assays, revealing that BdioOBP45 primarily binds to the D. abietella-induced volatile compounds, suggesting that this expanded OBP is likely involved in locating female wasp hosts and highlighting a direction for future research. Taken together, this work not only provides new genomic sequences for the Hymenoptera systematics, but also the high-quality chromosome-level genome of B. dioryctriae offers a valuable foundation for studying the molecular, evolutionary, and parasitic processes of parasitic wasps.\u0000","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"119 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-01997-9
Zhijing Zhang, Xinglin Hu, Yuchen Sun, Lei Lei, Zhonghua Liu
{"title":"Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression","authors":"Zhijing Zhang, Xinglin Hu, Yuchen Sun, Lei Lei, Zhonghua Liu","doi":"10.1186/s12915-024-01997-9","DOIUrl":"https://doi.org/10.1186/s12915-024-01997-9","url":null,"abstract":"iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. Our study aims to investigate BRD4’s role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4’s regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells’ transition out of the somatic cell state and activate pluripotent genes. In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"13 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-01990-2
Barbara Gawronska-Kozak, Sylwia Machcinska-Zielinska, Katarzyna Walendzik, Marta Kopcewicz, Mirva Pääkkönen, Joanna Wisniewska
{"title":"Hypoxia and Foxn1 alter the proteomic signature of dermal fibroblasts to redirect scarless wound healing to scar-forming skin wound healing in Foxn1−/− mice","authors":"Barbara Gawronska-Kozak, Sylwia Machcinska-Zielinska, Katarzyna Walendzik, Marta Kopcewicz, Mirva Pääkkönen, Joanna Wisniewska","doi":"10.1186/s12915-024-01990-2","DOIUrl":"https://doi.org/10.1186/s12915-024-01990-2","url":null,"abstract":"Foxn1−/− deficient mice are a rare model of regenerative skin wound healing among mammals. In wounded skin, the transcription factor Foxn1 interacting with hypoxia-regulated factors affects re-epithelialization, epithelial-mesenchymal transition (EMT) and dermal white adipose tissue (dWAT) reestablishment and is thus a factor regulating scar-forming/reparative healing. Here, we hypothesized that transcriptional crosstalk between Foxn1 and Hif-1α controls the switch from scarless (regenerative) to scar-present (reparative) skin wound healing. To verify this hypothesis, we examined (i) the effect of hypoxia/normoxia and Foxn1 signalling on the proteomic signature of Foxn1−/− (regenerative) dermal fibroblasts (DFs) and then (ii) explored the effect of Hif-1α or Foxn1/Hif-1α introduced by a lentiviral (LV) delivery vector to injured skin of regenerative Foxn1−/− mice with particular attention to the remodelling phase of healing. We showed that hypoxic conditions and Foxn1 stimulation modified the proteome of Foxn1−/− DFs. Hypoxic conditions upregulated DF protein profiles, particularly those related to extracellular matrix (ECM) composition: plasminogen activator inhibitor-1 (Pai-1), Sdc4, Plod2, Plod1, Lox, Loxl2, Itga2, Vldlr, Ftl1, Vegfa, Hmox1, Fth1, and F3. We found that Pai-1 was stimulated by hypoxic conditions in regenerative Foxn1−/− DFs but was released by DFs to the culture media exclusively upon hypoxia and Foxn1 stimulation. We also found higher levels of Pai-1 protein in DFs isolated from Foxn1+/+ mice (reparative/scar-forming) than in DFs isolated from Foxn1−/− (regenerative/scarless) mice and triggered by injury increase in Foxn1 and Pai-1 protein in the skin of mice with active Foxn1 (Foxn1+/+ mice). Then, we demonstrated that the introduction of Foxn1 and Hif-1α via lentiviral injection into the wounded skin of regenerative Foxn1−/− mice activates reparative/scar-forming healing by increasing the wounded skin area and decreasing hyaluronic acid deposition and the collagen type III to I ratio. We also identified a stimulatory effect of LV-Foxn1 + LV-Hif-1α injection in the wounded skin of Foxn1−/− mice on Pai-1 protein levels. The present data highlight the effect of hypoxia and Foxn1 on the protein profile and functionality of regenerative Foxn1−/− DFs and demonstrate that the introduction of Foxn1 and Hif-1α into the wounded skin of regenerative Foxn1−/− mice activates reparative/scar-forming healing.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"10 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-11DOI: 10.1186/s12915-024-02001-0
Danni Tong, Fei Wu, Xueqiu Chen, Zhendong Du, Jingru Zhou, Jingju Zhang, Yi Yang, Aifang Du, Guangxu Ma
{"title":"The mrp-3 gene is involved in haem efflux and detoxification in a blood-feeding nematode","authors":"Danni Tong, Fei Wu, Xueqiu Chen, Zhendong Du, Jingru Zhou, Jingju Zhang, Yi Yang, Aifang Du, Guangxu Ma","doi":"10.1186/s12915-024-02001-0","DOIUrl":"https://doi.org/10.1186/s12915-024-02001-0","url":null,"abstract":"Haem is essential but toxic for metazoan organisms. Auxotrophic nematodes can acquire sufficient haem from the environment or their hosts in the meanwhile eliminate or detoxify excessive haem through tightly controlled machinery. In previous work, we reported a role of the unique transporter protein HRG-1 in the haem acquisition and homeostasis of parasitic nematodes. However, little is known about the haem efflux and detoxification via ABC transporters, particularly the multiple drug resistance proteins (MRPs). Here, we further elucidate that a member of the mrp family (mrp-3) is involved in haem efflux and detoxification in a blood-feeding model gastrointestinal parasite, Haemonchus contortus. This gene is haem-responsive and dominantly expressed in the intestine and inner membrane of the hypodermis of this parasite. RNA interference of mrp-3 resulted in a disturbance of genes (e.g. hrg-1, hrg-2 and gst-1) that are known to be involved in haem homeostasis and an increased formation of haemozoin in the treated larvae and lethality in vitro, particularly when exposed to exogenous haem. Notably, the nuclear hormone receptor NHR-14 appears to be associated the regulation of mrp-3 expression for haem homeostasis and detoxification. Gene knockdown of nhr-14 and/or mrp-3 increases the sensitivity of treated larvae to exogenous haem and consequently a high death rate (> 80%). These findings demonstrate that MRP-3 and the associated molecules are essential for haematophagous nematodes, suggesting novel intervention targets for these pathogens in humans and animals.","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"11 1","pages":""},"PeriodicalIF":5.4,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142182021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data.","authors":"Nan Song, Miao-Miao Wang, Wei-Chao Huang, Zhi-Yi Wu, Renfu Shao, Xin-Ming Yin","doi":"10.1186/s12915-024-01991-1","DOIUrl":"10.1186/s12915-024-01991-1","url":null,"abstract":"<p><strong>Background: </strong>Hemiptera is the fifth species-rich order of insects and the most species-rich order of hemimetabolous insects, including numerous insect species that are of agricultural or medical significance. Despite much effort and recent advance in inferring the Hemiptera phylogeny, some high-level relationships among superfamilies remain controversial.</p><p><strong>Results: </strong>We sequenced the genomes of 64 hemipteran species from 15 superfamilies and the transcriptomes of two additional scale insect species, integrating them with existing genomic and transcriptomic data to conduct a comprehensive phylogenetic analysis of Hemiptera. Our datasets comprise an average of 1625 nuclear loci of 315 species across 27 superfamilies of Hemiptera. Our analyses supported Cicadoidea and Cercopoidea as sister groups, with Membracoidea typically positioned as the sister to Cicadoidea + Cercopoidea. In most analyses, Aleyrodoidea was recovered as the sister group of all other Sternorrhyncha. A sister-group relationship was supported between Coccoidea and Aphidoidea + Phylloxeroidea. These relationships were further supported by four-cluster likelihood mapping analyses across diverse datasets. Our ancestral state reconstruction indicates phytophagy as the primary feeding strategy for Hemiptera as a whole. However, predation likely represents an ancestral state for Heteroptera, with several phytophagous lineages having evolved from predatory ancestors. Certain lineages, like Lygaeoidea, have undergone a reversal transition from phytophagy to predation. Our divergence time estimation placed the diversification of hemipterans to be between 60 and 150 million years ago.</p><p><strong>Conclusions: </strong>By expanding phylogenomic taxon sampling, we clarified the superfamily relationships within the infraorder Cicadomorpha. Our phylogenetic analyses supported the sister-group relationship between the superfamilies Cicadoidea and Cercopoidea, and the superfamily Membracoidea as the sister to Cicadoidea + Cercopoidea. Our divergence time estimation supported the close association of hemipteran diversification with the evolutionary success and adaptive radiation of angiosperms during the Cretaceous period.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"190"},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-09-02DOI: 10.1186/s12915-024-01986-y
Yukun Kang, Zhicheng Wang, Kang An, Qiqi Hou, Zhiming Zhang, Junhu Su
{"title":"Introgression drives adaptation to the plateau environment in a subterranean rodent.","authors":"Yukun Kang, Zhicheng Wang, Kang An, Qiqi Hou, Zhiming Zhang, Junhu Su","doi":"10.1186/s12915-024-01986-y","DOIUrl":"10.1186/s12915-024-01986-y","url":null,"abstract":"<p><strong>Background: </strong>Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes.</p><p><strong>Results: </strong>Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors.</p><p><strong>Conclusions: </strong>Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"187"},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}