{"title":"Flow cytometric analysis for Ki67 assessment in formalin-fixed paraffin-embedded breast cancer tissue.","authors":"Natsuki Sato, Masahiko Tsujimoto, Masatoshi Nakatsuji, Hiromi Tsuji, Yuji Sugama, Kenzo Shimazu, Masafumi Shimoda, Hideki Ishihara","doi":"10.1186/s12915-024-01980-4","DOIUrl":"10.1186/s12915-024-01980-4","url":null,"abstract":"<p><strong>Background: </strong>Pathologists commonly employ the Ki67 immunohistochemistry labelling index (LI) when deciding appropriate therapeutic strategies for patients with breast cancer. However, despite several attempts at standardizing the Ki67 LI, inter-observer and inter-laboratory bias remain problematic. We developed a flow cytometric assay that employed tissue dissociation, enzymatic treatment and a gating process to analyse Ki67 in formalin-fixed paraffin-embedded (FFPE) breast cancer tissue.</p><p><strong>Results: </strong>We demonstrated that mechanical homogenizations combined with thrombin treatment can be used to recover efficiently intact single-cell nuclei from FFPE breast cancer tissue. Ki67 in the recovered cell nuclei retained reactivity against the MIB-1 antibody, which has been widely used in clinical settings. Additionally, since the method did not alter the nucleoskeletal structure of tissues, the nuclei of cancer cells can be enriched in data analysis based on differences in size and complexity of nuclei of lymphocytes and normal mammary cells. In a clinical study using the developed protocol, Ki67 positivity was correlated with the Ki67 LI obtained by hot spot analysis by a pathologist in Japan (rho = 0.756, P < 0.0001). The number of cancer cell nuclei subjected to the analysis in our assay was more than twice the number routinely checked by pathologists in clinical settings.</p><p><strong>Conclusions: </strong>The findings of this study showed the application of this new flow cytometry method could potentially be used to standardize Ki67 assessments in breast cancer.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"181"},"PeriodicalIF":4.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346000/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-08-26DOI: 10.1186/s12915-024-01978-y
Jiyun Yang, Bing Li, Yu-Ting Pan, Ping Wang, Mei-Ling Sun, Ki-Tae Kim, Hui Sun, Jian-Ren Ye, Zhen Jiao, Yong-Hwan Lee, Lin Huang
{"title":"Phospho-code of a conserved transcriptional factor underpins fungal virulence.","authors":"Jiyun Yang, Bing Li, Yu-Ting Pan, Ping Wang, Mei-Ling Sun, Ki-Tae Kim, Hui Sun, Jian-Ren Ye, Zhen Jiao, Yong-Hwan Lee, Lin Huang","doi":"10.1186/s12915-024-01978-y","DOIUrl":"10.1186/s12915-024-01978-y","url":null,"abstract":"<p><strong>Background: </strong>Cell wall integrity (CWI) is crucial for fungal growth, pathogenesis, and adaptation to extracellular environments. Calcofluor white (CFW) is a cell wall perturbant that inhibits fungal growth, yet little is known about how phytopathogenic fungi respond to the CFW-induced stress.</p><p><strong>Results: </strong>In this study, we unveiled a significant discovery that CFW triggered the translocation of the transcription factor CgCrzA from the cytoplasm to the nucleus in Colletotrichum gloeosporioides. This translocation was regulated by an interacting protein, CgMkk1, a mitogen-activated protein kinase involved in the CWI pathway. Further analysis revealed that CgMkk1 facilitated nuclear translocation by phosphorylating CgCrzA at the Ser280 residue. Using chromatin immunoprecipitation sequencing, we identified two downstream targets of CgCrzA, namely CgCHS5 and CgCHS6, which are critical for growth, cell wall integrity, and pathogenicity as chitin synthase genes.</p><p><strong>Conclusions: </strong>These findings provide a novel insight into the regulatory mechanism of CgMkk1-CgCrzA-CgChs5/6, which enables response of the cell wall inhibitor CFW and facilitates infectious growth for C. gloeosporioides.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"179"},"PeriodicalIF":4.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PmLBD3 links auxin and brassinosteroid signalling pathways on dwarfism in Prunus mume.","authors":"Yufan Ma, Chengdong Ma, Pengyu Zhou, Feng Gao, Wei Tan, Xiao Huang, Yang Bai, Minglu Li, Ziqi Wang, Faisal Hayat, Ting Shi, Zhaojun Ni, Zhihong Gao","doi":"10.1186/s12915-024-01985-z","DOIUrl":"10.1186/s12915-024-01985-z","url":null,"abstract":"<p><strong>Background: </strong>Grafting with dwarf rootstock is an efficient method to control plant height in fruit production. However, the molecular mechanism remains unclear. Our previous study showed that plants with Prunus mume (mume) rootstock exhibited a considerable reduction in plant height, internode length, and number of nodes compared with Prunus persica (peach) rootstock. The present study aimed to investigate the mechanism behind the regulation of plant height by mume rootstocks through transcriptomic and metabolomic analyses with two grafting combinations, 'Longyan/Mume' and 'Longyan/Peach'.</p><p><strong>Results: </strong>There was a significant decrease in brassinolide levels in plants that were grafted onto mume rootstocks. Plant hormone signal transduction and brassinolide production metabolism gene expression also changed significantly. Flavonoid levels, amino acid and fatty acid metabolites, and energy metabolism in dwarf plants decreased. There was a notable upregulation of PmLBD3 gene expression in plant specimens that were subjected to grafting onto mume rootstocks. Auxin signalling cues promoted PmARF3 transcription, which directly controlled this upregulation. Through its binding to PmBAS1 and PmSAUR36a gene promoters, PmLBD3 promoted endogenous brassinolide inactivation and inhibited cell proliferation.</p><p><strong>Conclusions: </strong>Auxin signalling and brassinolide levels are linked by PmLBD3. Our findings showed that PmLBD3 is a key transcription factor that regulates the balance of hormones through the auxin and brassinolide signalling pathways and causes dwarf plants in stone fruits.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"184"},"PeriodicalIF":4.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"G-quadruplexes as pivotal components of cis-regulatory elements in the human genome.","authors":"Rongxin Zhang, Yuqi Wang, Cheng Wang, Xiao Sun, Jean-Louis Mergny","doi":"10.1186/s12915-024-01971-5","DOIUrl":"10.1186/s12915-024-01971-5","url":null,"abstract":"<p><strong>Background: </strong>Cis-regulatory elements (CREs) are crucial for regulating gene expression, and G-quadruplexes (G4s), as prototypal non-canonical DNA structures, may play a role in this regulation. However, the relationship between G4s and CREs, especially with non-promoter-like functional elements, requires further systematic investigation. We aimed to investigate the associations between G4s and human cCREs (candidate CREs) inferred from the Encyclopedia of DNA Elements (ENCODE) data.</p><p><strong>Results: </strong>We found that G4s are prominently enriched in most types of cCREs, especially those with promoter-like signatures (PLS). The co-occurrence of CTCF signals with H3K4me3 or H3K27ac signals strengthens the association between cCREs and G4s. Genetic variants in G4s, particularly within their G-runs, exhibit higher regulatory potential and deleterious effects compared to cCREs. The G-runs within G4s near transcriptional start sites (TSSs) are more evolutionarily constrained compared to G-runs in cCREs, while those far from the TSS are relatively less conserved. The presence of G4s is often linked to a more favorable local chromatin environment for the activation and execution of regulatory function of cCREs, potentially attributable to the formation of G4 secondary structures. Finally, we discovered that G4-associated cCREs exhibit widespread activation in a variety of cancers.</p><p><strong>Conclusions: </strong>Our study suggests that G4s are integral components of human cis-regulatory elements, extending beyond their potential role in promoters. The G4 primary sequences are associated with the localization of CREs, while the G4 structures are linked to the activation of these elements. Therefore, we propose defining G4s as pivotal regulatory elements in the human genome.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"177"},"PeriodicalIF":4.4,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346177/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142055026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-08-15DOI: 10.1186/s12915-024-01974-2
Yi Yang, Shan Xiao, Xianxin Zhao, Yu H Sun, Qi Fang, Longjiang Fan, Gongyin Ye, Xinhai Ye
{"title":"Host and venom evolution in parasitoid wasps: does independently adapting to the same host shape the evolution of the venom gland transcriptome?","authors":"Yi Yang, Shan Xiao, Xianxin Zhao, Yu H Sun, Qi Fang, Longjiang Fan, Gongyin Ye, Xinhai Ye","doi":"10.1186/s12915-024-01974-2","DOIUrl":"10.1186/s12915-024-01974-2","url":null,"abstract":"<p><strong>Background: </strong>Venoms have repeatedly evolved over 100 occasions throughout the animal tree of life, making them excellent systems for exploring convergent evolutionary novelty. Growing evidence supports that venom evolution is predominantly driven by prey or host-related selection pressures, and the expression patterns of venom glands reflect adaptive evolution. However, it remains elusive whether the evolution of expression patterns in venom glands is likewise a convergent evolution driven by their prey/host species.</p><p><strong>Results: </strong>We utilized parasitoid wasps that had independently adapted to Drosophila hosts as models to investigate the convergent evolution of venom gland transcriptomes in 19 hymenopteran species spanning ~ 200 million years of evolution. Comparative transcriptome analysis reveals that the global expression patterns among the venom glands of Drosophila parasitoid wasps do not achieve higher similarity compared to non-Drosophila parasitoid wasps. Further evolutionary analyses of expression patterns at the single gene, orthogroup, and Gene Ontology (GO) term levels indicate that some orthogroups/GO terms show correlation with the Drosophila parasitoid wasps. However, these groups rarely include genes highly expressed in venom glands or putative venom genes in the Drosophila parasitoid wasps.</p><p><strong>Conclusions: </strong>Our study suggests that convergent evolution may not play a predominant force shaping gene expression levels in the venom gland of the Drosophila parasitoid wasps, offering novel insights into the co-evolution between venom and prey/host.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"174"},"PeriodicalIF":4.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328476/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-08-15DOI: 10.1186/s12915-024-01968-0
Huan Zhu, Hongxia Hao, Liang Yu
{"title":"Identification of microbe-disease signed associations via multi-scale variational graph autoencoder based on signed message propagation.","authors":"Huan Zhu, Hongxia Hao, Liang Yu","doi":"10.1186/s12915-024-01968-0","DOIUrl":"10.1186/s12915-024-01968-0","url":null,"abstract":"<p><strong>Background: </strong>Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine.</p><p><strong>Results: </strong>Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes.</p><p><strong>Conclusions: </strong>MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"172"},"PeriodicalIF":4.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328394/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-08-15DOI: 10.1186/s12915-024-01965-3
Victor M Flores-Nunez, Eva H Stukenbrock
{"title":"The impact of filamentous plant pathogens on the host microbiota.","authors":"Victor M Flores-Nunez, Eva H Stukenbrock","doi":"10.1186/s12915-024-01965-3","DOIUrl":"10.1186/s12915-024-01965-3","url":null,"abstract":"<p><p>When a pathogen invades a plant, it encounters a diverse microbiota with some members contributing to the health and growth of the plant host. So far, the relevance of interactions between pathogens and the plant microbiota are poorly understood; however, new lines of evidence suggest that pathogens play an important role in shaping the microbiome of their host during invasion. This review aims to summarize recent findings that document changes in microbial community composition during the invasion of filamentous pathogens in plant tissues. We explore the known mechanisms of interaction between plant pathogens and the host microbiota that underlie these changes, particularly the pathogen-encoded traits that are produced to target specific microbes. Moreover, we discuss the limitations of current strategies and shed light on new perspectives to study the complex interaction networks between filamentous pathogens and the plant microbiome.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"175"},"PeriodicalIF":4.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328434/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BMC BiologyPub Date : 2024-08-15DOI: 10.1186/s12915-024-01977-z
Eduard Bokman, Christian O Pritz, Rotem Ruach, Eyal Itskovits, Hadar Sharvit, Alon Zaslaver
{"title":"Intricate response dynamics enhances stimulus discrimination in the resource-limited C. elegans chemosensory system.","authors":"Eduard Bokman, Christian O Pritz, Rotem Ruach, Eyal Itskovits, Hadar Sharvit, Alon Zaslaver","doi":"10.1186/s12915-024-01977-z","DOIUrl":"10.1186/s12915-024-01977-z","url":null,"abstract":"<p><strong>Background: </strong>Sensory systems evolved intricate designs to accurately encode perplexing environments. However, this encoding task may become particularly challenging for animals harboring a small number of sensory neurons. Here, we studied how the compact resource-limited chemosensory system of Caenorhabditis elegans uniquely encodes a range of chemical stimuli.</p><p><strong>Results: </strong>We find that each stimulus is encoded using a small and unique subset of neurons, where only a portion of the encoding neurons sense the stimulus directly, and the rest are recruited via inter-neuronal communication. Furthermore, while most neurons show stereotypical response dynamics, some neurons exhibit versatile dynamics that are either stimulus specific or network-activity dependent. Notably, it is the collective dynamics of all responding neurons which provides valuable information that ultimately enhances stimulus identification, particularly when required to discriminate between closely related stimuli.</p><p><strong>Conclusions: </strong>Together, these findings demonstrate how a compact and resource-limited chemosensory system can efficiently encode and discriminate a diverse range of chemical stimuli.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"173"},"PeriodicalIF":4.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11328493/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CRY1 is involved in the take-off behaviour of migratory Cnaphalocrocis medinalis individuals.","authors":"Tianyi Sun, Fan Yang, Haiyan Zhang, Yajun Yang, Zhongxian Lu, Baoping Zhai, Hongxing Xu, Jiahao Lu, Yanhui Lu, Yumeng Wang, Jiawen Guo, Gao Hu","doi":"10.1186/s12915-024-01964-4","DOIUrl":"10.1186/s12915-024-01964-4","url":null,"abstract":"<p><strong>Background: </strong>Numerous insect species undertake long-distance migrations on an enormous scale, with great implications for ecosystems. Given that take-off is the point where it all starts, whether and how the external light and internal circadian rhythm are involved in regulating the take-off behaviour remains largely unknown. Herein, we explore this issue in a migratory pest, Cnaphalocrocis medinalis, via behavioural observations and RNAi experiments.</p><p><strong>Results: </strong>The results showed that C. medinalis moths took off under conditions where the light intensity gradually weakened to 0.1 lx during the afternoon or evening, and the take-off proportions under full spectrum or blue light were significantly higher than that under red and green light. The ultraviolet-A/blue light-sensitive type 1 cryptochrome gene (Cmedcry1) was significantly higher in take-off moths than that of non-take-off moths. In contrast, the expression of the light-insensitive CRY2 (Cmedcry2) and circadian genes (Cmedtim and Cmedper) showed no significant differences. After silencing Cmedcry1, the take-off proportion significantly decreased. Thus, Cmedcry1 is involved in the decrease in light intensity induced take-off behaviour in C. medinalis.</p><p><strong>Conclusions: </strong>This study can help further explain the molecular mechanisms behind insect migration, especially light perception and signal transmission during take-off phases.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"169"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320853/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lipases are differentially regulated by hormones to maintain free fatty acid homeostasis for insect brain development.","authors":"Yan-Xue Li, Qiao Yan, Tian-Wen Liu, Jin-Xing Wang, Xiao-Fan Zhao","doi":"10.1186/s12915-024-01973-3","DOIUrl":"10.1186/s12915-024-01973-3","url":null,"abstract":"<p><strong>Background: </strong>Free fatty acids (FFAs) play vital roles as energy sources and substrates in organisms; however, the molecular mechanism regulating the homeostasis of FFA levels in various circumstances, such as feeding and nonfeeding stages, is not fully clarified. Holometabolous insects digest dietary triglycerides (TAGs) during larval feeding stages and degrade stored TAGs in the fat body during metamorphosis after feeding cessation, which presents a suitable model for this study.</p><p><strong>Results: </strong>This study reported that two lipases are differentially regulated by hormones to maintain the homeostasis of FFA levels during the feeding and nonfeeding stages using the lepidopteran insect cotton bollworm Helicoverpa armigera as a model. Lipase member H-A-like (Lha-like), related to human pancreatic lipase (PTL), was abundantly expressed in the midgut during the feeding stage, while the monoacylglycerol lipase ABHD12-like (Abhd12-like), related to human monoacylglycerol lipase (MGL), was abundantly expressed in the fat body during the nonfeeding stage. Lha-like was upregulated by juvenile hormone (JH) via the JH intracellular receptor methoprene-tolerant 1 (MET1), and Abhd12-like was upregulated by 20-hydroxyecdysone (20E) via forkhead box O (FOXO) transcription factor. Knockdown of Lha-like decreased FFA levels in the hemolymph and reduced TAG levels in the fat body. Moreover, lipid droplets (LDs) were small, the brain morphology was abnormal, the size of the brain was small, and the larvae showed the phenotype of delayed pupation, small pupae, and delayed tissue remodeling. Knockdown of Abhd12-like decreased FFA levels in the hemolymph; however, TAG levels increased in the fat body, and LDs remained large. The development of the brain was arrested at the larval stage, and the larvae showed a delayed pupation phenotype and delayed tissue remodeling.</p><p><strong>Conclusions: </strong>The differential regulation of lipases expression by different hormones determines FFAs homeostasis and different TAG levels in the fat body during the feeding larval growth and nonfeeding stages of metamorphosis in the insect. The homeostasis of FFAs supports insect growth, brain development, and metamorphosis.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"171"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321213/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}