iVAE: an interpretable representation learning framework enhances clustering performance for single-cell data.

IF 4.4 1区 生物学 Q1 BIOLOGY
Zeyu Fu, Chunlin Chen, Song Wang, Junping Wang, Shilei Chen
{"title":"iVAE: an interpretable representation learning framework enhances clustering performance for single-cell data.","authors":"Zeyu Fu, Chunlin Chen, Song Wang, Junping Wang, Shilei Chen","doi":"10.1186/s12915-025-02315-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Variational autoencoders (VAEs) serve as essential components in large generative models for extracting latent representations and have gained widespread application in biological domains. Developing VAEs specifically tailored to the unique characteristics of biological data is crucial for advancing future large-scale biological models.</p><p><strong>Results: </strong>Through systematic monitoring of VAE training processes across 31 public single-cell datasets spanning oncological and normal conditions, we discovered that reducing the <math><mi>β</mi></math> value which corresponds to lower disentanglement of VAE significantly improves unsupervised clustering metrics in single-cell data analysis. Based on this finding, we innovatively developed iVAE with an irecon module that, when benchmarked against 8 established dimensionality reduction methods across 5 clustering performance metrics, exhibited superior capabilities in representing single-cell transcriptomic data.</p><p><strong>Conclusions: </strong>The proposed iVAE architecture enhances the interpretability of single-cell data compared to conventional VAE architectures as measured by clustering metrics. Our work establishes a potential foundational VAE architecture for developing specialized large-scale generative models for biological applications.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"213"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261748/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02315-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Variational autoencoders (VAEs) serve as essential components in large generative models for extracting latent representations and have gained widespread application in biological domains. Developing VAEs specifically tailored to the unique characteristics of biological data is crucial for advancing future large-scale biological models.

Results: Through systematic monitoring of VAE training processes across 31 public single-cell datasets spanning oncological and normal conditions, we discovered that reducing the β value which corresponds to lower disentanglement of VAE significantly improves unsupervised clustering metrics in single-cell data analysis. Based on this finding, we innovatively developed iVAE with an irecon module that, when benchmarked against 8 established dimensionality reduction methods across 5 clustering performance metrics, exhibited superior capabilities in representing single-cell transcriptomic data.

Conclusions: The proposed iVAE architecture enhances the interpretability of single-cell data compared to conventional VAE architectures as measured by clustering metrics. Our work establishes a potential foundational VAE architecture for developing specialized large-scale generative models for biological applications.

iVAE:一个可解释的表示学习框架,提高了单细胞数据的聚类性能。
背景:变分自编码器(VAEs)作为提取潜在表征的大型生成模型的重要组成部分,在生物领域得到了广泛的应用。开发专门针对生物数据独特特征的VAEs对于推进未来大规模生物模型至关重要。结果:通过对31个公共单细胞数据集(包括肿瘤和正常情况)的VAE训练过程进行系统监测,我们发现,降低与低解缠度相对应的β值显著提高了单细胞数据分析中的无监督聚类指标。基于这一发现,我们创新地开发了带有irecon模块的iVAE,当与8种已建立的降维方法在5个聚类性能指标中进行基准测试时,该模块在表示单细胞转录组数据方面表现出卓越的能力。结论:与通过聚类度量的传统VAE体系结构相比,所提出的iVAE体系结构增强了单细胞数据的可解释性。我们的工作建立了一个潜在的基础VAE架构,用于为生物应用开发专门的大规模生成模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信