NeXtMD: a new generation of machine learning and deep learning stacked hybrid framework for accurate identification of anti-inflammatory peptides.

IF 4.4 1区 生物学 Q1 BIOLOGY
Chengzhi Xie, Yijie Wei, Xinwei Luo, Huan Yang, Hongyan Lai, Fuying Dao, Juan Feng, Hao Lv
{"title":"NeXtMD: a new generation of machine learning and deep learning stacked hybrid framework for accurate identification of anti-inflammatory peptides.","authors":"Chengzhi Xie, Yijie Wei, Xinwei Luo, Huan Yang, Hongyan Lai, Fuying Dao, Juan Feng, Hao Lv","doi":"10.1186/s12915-025-02314-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate identification of anti-inflammatory peptides (AIPs) is crucial for drug development and inflammatory disease treatment. However, the short length and limited informational content of peptide sequences make precise computational recognition particularly challenging. While various machine learning and deep learning approaches have been explored, their limitations in feature representation and model integration hinder the effective discovery of novel AIPs.</p><p><strong>Results: </strong>In this study, we present NeXtMD, a novel dual-module stacked framework that integrates both machine learning (ML) and deep learning (DL) components for accurate AIP identification. NeXtMD systematically extracts four functionally relevant sequence-derived descriptors-residue composition, inter-residue correlation, physicochemical properties, and sequence patterns-and utilizes a two-stage prediction strategy. The first stage generates preliminary predictions using four distinct encoding strategies and ML classifiers, while the second stage employs a multi-branch residual network (ResNeXt) to refine prediction outputs. Benchmark evaluations demonstrate that NeXtMD outperforms current state-of-the-art methods on multiple performance metrics. Moreover, NeXtMD maintains strong generalization capabilities when applied to unseen peptide sequences, showing its robustness and scalability.</p><p><strong>Conclusions: </strong>NeXtMD offers a high-performance and interpretable computational framework for AIP identification, with significant potential to facilitate the discovery and design of peptide-based anti-inflammatory therapeutics. The architecture and methodological innovations of NeXtMD also provide a generalizable strategy that can be adapted to other bioactive peptide prediction tasks, supporting broader applications in therapeutic peptide development.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"212"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02314-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate identification of anti-inflammatory peptides (AIPs) is crucial for drug development and inflammatory disease treatment. However, the short length and limited informational content of peptide sequences make precise computational recognition particularly challenging. While various machine learning and deep learning approaches have been explored, their limitations in feature representation and model integration hinder the effective discovery of novel AIPs.

Results: In this study, we present NeXtMD, a novel dual-module stacked framework that integrates both machine learning (ML) and deep learning (DL) components for accurate AIP identification. NeXtMD systematically extracts four functionally relevant sequence-derived descriptors-residue composition, inter-residue correlation, physicochemical properties, and sequence patterns-and utilizes a two-stage prediction strategy. The first stage generates preliminary predictions using four distinct encoding strategies and ML classifiers, while the second stage employs a multi-branch residual network (ResNeXt) to refine prediction outputs. Benchmark evaluations demonstrate that NeXtMD outperforms current state-of-the-art methods on multiple performance metrics. Moreover, NeXtMD maintains strong generalization capabilities when applied to unseen peptide sequences, showing its robustness and scalability.

Conclusions: NeXtMD offers a high-performance and interpretable computational framework for AIP identification, with significant potential to facilitate the discovery and design of peptide-based anti-inflammatory therapeutics. The architecture and methodological innovations of NeXtMD also provide a generalizable strategy that can be adapted to other bioactive peptide prediction tasks, supporting broader applications in therapeutic peptide development.

NeXtMD:用于准确识别抗炎肽的新一代机器学习和深度学习堆叠混合框架。
背景:准确鉴定抗炎肽(AIPs)对药物开发和炎症性疾病治疗至关重要。然而,肽序列的短长度和有限的信息含量使得精确的计算识别特别具有挑战性。虽然已经探索了各种机器学习和深度学习方法,但它们在特征表示和模型集成方面的局限性阻碍了新的aip的有效发现。结果:在本研究中,我们提出了NeXtMD,这是一种新的双模块堆叠框架,集成了机器学习(ML)和深度学习(DL)组件,用于准确识别AIP。NeXtMD系统地提取四种功能相关的序列衍生描述符——残基组成、残基间相关性、物理化学性质和序列模式,并采用两阶段预测策略。第一阶段使用四种不同的编码策略和ML分类器生成初步预测,而第二阶段使用多分支残差网络(ResNeXt)来优化预测输出。基准评估表明,NeXtMD在多个性能指标上优于当前最先进的方法。此外,NeXtMD在应用于未见肽序列时保持了较强的泛化能力,显示了其鲁棒性和可扩展性。结论:NeXtMD为AIP鉴定提供了一个高性能和可解释的计算框架,具有促进基于肽的抗炎疗法的发现和设计的巨大潜力。NeXtMD的架构和方法创新也提供了一种可适用于其他生物活性肽预测任务的通用策略,支持在治疗性肽开发中的更广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信