DTI-RME:用于药物-靶标相互作用预测的鲁棒多核集成方法。

IF 4.5 1区 生物学 Q1 BIOLOGY
Yuqing Qian, Xin Zhang, Yizheng Wang, Quan Zou, Chen Cao, Yijie Ding, Xiaoyi Guo
{"title":"DTI-RME:用于药物-靶标相互作用预测的鲁棒多核集成方法。","authors":"Yuqing Qian, Xin Zhang, Yizheng Wang, Quan Zou, Chen Cao, Yijie Ding, Xiaoyi Guo","doi":"10.1186/s12915-025-02340-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Drug-target interaction (DTI) refers to the specific mechanisms by which drug molecules interact with biological targets within a biological system. Computational methods are widely employed for DTI prediction, as they are time-efficient and resource-saving compared to experimental approaches. Although numerous DTI prediction methods have achieved promising results, accurately modeling DTIs remains challenging due to three key issues: noisy interaction labels, ineffective multi-view fusion, and incomplete structural modeling.</p><p><strong>Results: </strong>We propose a novel method termed DTI-RME. The DTI-RME introduces an innovative <math> <mrow><msub><mi>L</mi> <mn>2</mn></msub> <mo>-</mo> <mi>C</mi></mrow> </math> loss function that combines the benefits of <math><msub><mi>L</mi> <mn>2</mn></msub> </math> loss to reduce prediction errors and the robustness of C-loss in handling outliers. This method fuses multiple views through multi-kernel learning that assigns weights to different kernels. DTI-RME uses ensemble learning to assume and learn multiple structures, including the drug-target pair, drug, target, and low-rank structures.</p><p><strong>Conclusions: </strong>We evaluated DTI-RME on five real-world DTI datasets and conducted experiments focusing on three key scenarios. In all experiments, DTI-RME demonstrated superior performance compared to existing methods. Furthermore, the case study confirmed DTI-RME's ability to identify novel drug-target interactions accurately, with 17 of the top 50 predicted interactions being validated.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"225"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302742/pdf/","citationCount":"0","resultStr":"{\"title\":\"DTI-RME: a robust and multi-kernel ensemble approach for drug-target interaction prediction.\",\"authors\":\"Yuqing Qian, Xin Zhang, Yizheng Wang, Quan Zou, Chen Cao, Yijie Ding, Xiaoyi Guo\",\"doi\":\"10.1186/s12915-025-02340-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Drug-target interaction (DTI) refers to the specific mechanisms by which drug molecules interact with biological targets within a biological system. Computational methods are widely employed for DTI prediction, as they are time-efficient and resource-saving compared to experimental approaches. Although numerous DTI prediction methods have achieved promising results, accurately modeling DTIs remains challenging due to three key issues: noisy interaction labels, ineffective multi-view fusion, and incomplete structural modeling.</p><p><strong>Results: </strong>We propose a novel method termed DTI-RME. The DTI-RME introduces an innovative <math> <mrow><msub><mi>L</mi> <mn>2</mn></msub> <mo>-</mo> <mi>C</mi></mrow> </math> loss function that combines the benefits of <math><msub><mi>L</mi> <mn>2</mn></msub> </math> loss to reduce prediction errors and the robustness of C-loss in handling outliers. This method fuses multiple views through multi-kernel learning that assigns weights to different kernels. DTI-RME uses ensemble learning to assume and learn multiple structures, including the drug-target pair, drug, target, and low-rank structures.</p><p><strong>Conclusions: </strong>We evaluated DTI-RME on five real-world DTI datasets and conducted experiments focusing on three key scenarios. In all experiments, DTI-RME demonstrated superior performance compared to existing methods. Furthermore, the case study confirmed DTI-RME's ability to identify novel drug-target interactions accurately, with 17 of the top 50 predicted interactions being validated.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"225\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302742/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02340-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02340-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:药物-靶标相互作用(drug -target interaction, DTI)是指在生物系统中药物分子与生物靶标相互作用的特定机制。与实验方法相比,计算方法具有省时、节约资源的优点,被广泛应用于DTI预测。尽管许多DTI预测方法取得了令人满意的结果,但由于三个关键问题:噪声相互作用标签、无效的多视图融合和不完整的结构建模,准确建模DTI仍然具有挑战性。结果:我们提出了一种新的DTI-RME方法。DTI-RME引入了一个创新的l2 - C损失函数,它结合了l2损失的好处,以减少预测误差和处理异常值时C损失的鲁棒性。该方法通过多核学习融合多个视图,为不同的核分配权重。DTI-RME使用集成学习来假设和学习多个结构,包括药物-目标对、药物、目标和低阶结构。结论:我们在5个真实的DTI数据集上评估了DTI- rme,并针对3个关键场景进行了实验。在所有实验中,与现有方法相比,DTI-RME表现出优越的性能。此外,该案例研究证实了DTI-RME准确识别新型药物靶标相互作用的能力,前50种预测相互作用中有17种得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DTI-RME: a robust and multi-kernel ensemble approach for drug-target interaction prediction.

Background: Drug-target interaction (DTI) refers to the specific mechanisms by which drug molecules interact with biological targets within a biological system. Computational methods are widely employed for DTI prediction, as they are time-efficient and resource-saving compared to experimental approaches. Although numerous DTI prediction methods have achieved promising results, accurately modeling DTIs remains challenging due to three key issues: noisy interaction labels, ineffective multi-view fusion, and incomplete structural modeling.

Results: We propose a novel method termed DTI-RME. The DTI-RME introduces an innovative L 2 - C loss function that combines the benefits of L 2 loss to reduce prediction errors and the robustness of C-loss in handling outliers. This method fuses multiple views through multi-kernel learning that assigns weights to different kernels. DTI-RME uses ensemble learning to assume and learn multiple structures, including the drug-target pair, drug, target, and low-rank structures.

Conclusions: We evaluated DTI-RME on five real-world DTI datasets and conducted experiments focusing on three key scenarios. In all experiments, DTI-RME demonstrated superior performance compared to existing methods. Furthermore, the case study confirmed DTI-RME's ability to identify novel drug-target interactions accurately, with 17 of the top 50 predicted interactions being validated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信