{"title":"Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results","authors":"M. Nasiruzzaman","doi":"10.3934/mfc.2022019","DOIUrl":"https://doi.org/10.3934/mfc.2022019","url":null,"abstract":"<p style='text-indent:20px;'>In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres <inline-formula><tex-math id=\"M1\">begin{document}$ K $end{document}</tex-math></inline-formula>-functional and weighted functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75494743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complex network pinning control based On DR algorithm","authors":"Haiyi Sun, Limeng Zhang, Lei Ji","doi":"10.3934/mfc.2023013","DOIUrl":"https://doi.org/10.3934/mfc.2023013","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70220403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Better approximation by a Durrmeyer variant of $ alpha- $Baskakov operators","authors":"P. Agrawal, J. Singh","doi":"10.3934/mfc.2021040","DOIUrl":"https://doi.org/10.3934/mfc.2021040","url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id=\"M2\">begin{document}$ alpha $end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id=\"M3\">begin{document}$ M_{n,alpha} $end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id=\"M4\">begin{document}$ ddot{u} $end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id=\"M5\">begin{document}$ e_0 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">begin{document}$ e_2 $end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id=\"M7\">begin{document}$ M_{n,alpha} $end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80868412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symbolic computation of recurrence coefficients for polynomials orthogonal with respect to the Szegő-Bernstein weights","authors":"G. Milovanović","doi":"10.3934/mfc.2022049","DOIUrl":"https://doi.org/10.3934/mfc.2022049","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88871752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fuzzy fractional more sigmoid function activated neural network approximations revisited","authors":"G. Anastassiou","doi":"10.3934/mfc.2022031","DOIUrl":"https://doi.org/10.3934/mfc.2022031","url":null,"abstract":"Here we study the univariate fuzzy fractional quantitative approximation of fuzzy real valued functions on a compact interval by quasi-interpolation arctangent-algebraic-Gudermannian-generalized symmetrical activation function relied fuzzy neural network operators. These approximations are derived by establishing fuzzy Jackson type inequalities involving the fuzzy moduli of continuity of the right and left Caputo fuzzy fractional derivatives of the involved function. The approximations are fuzzy pointwise and fuzzy uniform. The related feed-forward fuzzy neural networks are with one hidden layer. We study also the fuzzy integer derivative and just fuzzy continuous cases. Our fuzzy fractional approximation result using higher order fuzzy differentiation converges better than in the fuzzy just continuous case.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78100258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}