Mathematical foundations of computing最新文献

筛选
英文 中文
Integral modification of Beta-Apostol-Genocchi operators β - apostoll - genocchi算子的积分修正
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022039
N. Bhardwaj, N. Deo
{"title":"Integral modification of Beta-Apostol-Genocchi operators","authors":"N. Bhardwaj, N. Deo","doi":"10.3934/mfc.2022039","DOIUrl":"https://doi.org/10.3934/mfc.2022039","url":null,"abstract":"We propose certain Durrmeyer-type operators for Apostol-Genocchi polynomials in this research. We explore these operators' approximation attributes and measure the rate of convergence. In addition, we present a direct approximation theorem based on first and second-order modulus of continuity, local approximation findings for Lipschitz class functions and a direct theorem based on the typical modulus of continuity. Finally, we showed a graph illustrating the convergence of the suggested operators and an error table.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"88 1","pages":"474-483"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83533119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Better approximation by a Durrmeyer variant of $ alpha- $Baskakov operators 由$ α - $Baskakov算子的Durrmeyer变体得到更好的近似
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2021040
P. Agrawal, J. Singh
{"title":"Better approximation by a Durrmeyer variant of $ alpha- $Baskakov operators","authors":"P. Agrawal, J. Singh","doi":"10.3934/mfc.2021040","DOIUrl":"https://doi.org/10.3934/mfc.2021040","url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id=\"M2\">begin{document}$ alpha $end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id=\"M3\">begin{document}$ M_{n,alpha} $end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id=\"M4\">begin{document}$ ddot{u} $end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id=\"M5\">begin{document}$ e_0 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">begin{document}$ e_2 $end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id=\"M7\">begin{document}$ M_{n,alpha} $end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"10 1","pages":"108-122"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80868412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Fuzzy fractional more sigmoid function activated neural network approximations revisited 模糊分数型多s型函数激活神经网络逼近
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022031
G. Anastassiou
{"title":"Fuzzy fractional more sigmoid function activated neural network approximations revisited","authors":"G. Anastassiou","doi":"10.3934/mfc.2022031","DOIUrl":"https://doi.org/10.3934/mfc.2022031","url":null,"abstract":"Here we study the univariate fuzzy fractional quantitative approximation of fuzzy real valued functions on a compact interval by quasi-interpolation arctangent-algebraic-Gudermannian-generalized symmetrical activation function relied fuzzy neural network operators. These approximations are derived by establishing fuzzy Jackson type inequalities involving the fuzzy moduli of continuity of the right and left Caputo fuzzy fractional derivatives of the involved function. The approximations are fuzzy pointwise and fuzzy uniform. The related feed-forward fuzzy neural networks are with one hidden layer. We study also the fuzzy integer derivative and just fuzzy continuous cases. Our fuzzy fractional approximation result using higher order fuzzy differentiation converges better than in the fuzzy just continuous case.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"20 1","pages":"320-353"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78100258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Federated learning for minimizing nonsmooth convex loss functions 最小化非光滑凸损失函数的联邦学习
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023026
Le-Yin Wei, Zhan Yu, Ding-Xuan Zhou
{"title":"Federated learning for minimizing nonsmooth convex loss functions","authors":"Le-Yin Wei, Zhan Yu, Ding-Xuan Zhou","doi":"10.3934/mfc.2023026","DOIUrl":"https://doi.org/10.3934/mfc.2023026","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"13 8 1","pages":"753-770"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82623499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Symbolic computation of recurrence coefficients for polynomials orthogonal with respect to the Szegő-Bernstein weights 关于Szegő-Bernstein权重正交多项式递归系数的符号计算
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022049
G. Milovanović
{"title":"Symbolic computation of recurrence coefficients for polynomials orthogonal with respect to the Szegő-Bernstein weights","authors":"G. Milovanović","doi":"10.3934/mfc.2022049","DOIUrl":"https://doi.org/10.3934/mfc.2022049","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"30 1","pages":"460-473"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88871752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On hybrid Baskakov operators preserving two exponential functions 关于保留两个指数函数的混合Baskakov算子
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023001
Vijay Gupta, Gunjan Agrawal
{"title":"On hybrid Baskakov operators preserving two exponential functions","authors":"Vijay Gupta, Gunjan Agrawal","doi":"10.3934/mfc.2023001","DOIUrl":"https://doi.org/10.3934/mfc.2023001","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70219830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex network pinning control based On DR algorithm 基于DR算法的复杂网络固定控制
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023013
Haiyi Sun, Limeng Zhang, Lei Ji
{"title":"Complex network pinning control based On DR algorithm","authors":"Haiyi Sun, Limeng Zhang, Lei Ji","doi":"10.3934/mfc.2023013","DOIUrl":"https://doi.org/10.3934/mfc.2023013","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70220403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Paint surface estimation and trajectory planning for automated painting systems 自动喷涂系统的涂料表面估计和轨迹规划
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2023034
Weijia Lu, Chengxi Zhang, Fei Liu, Shunyi Zhao, X. Luan, Jin Wu
{"title":"Paint surface estimation and trajectory planning for automated painting systems","authors":"Weijia Lu, Chengxi Zhang, Fei Liu, Shunyi Zhao, X. Luan, Jin Wu","doi":"10.3934/mfc.2023034","DOIUrl":"https://doi.org/10.3934/mfc.2023034","url":null,"abstract":"","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70221011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results Szász-Jakimovski-Leviatan类型算子序列的收敛性及相关结果
Mathematical foundations of computing Pub Date : 2023-01-01 DOI: 10.3934/mfc.2022019
M. Nasiruzzaman
{"title":"Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results","authors":"M. Nasiruzzaman","doi":"10.3934/mfc.2022019","DOIUrl":"https://doi.org/10.3934/mfc.2022019","url":null,"abstract":"<p style='text-indent:20px;'>In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres <inline-formula><tex-math id=\"M1\">begin{document}$ K $end{document}</tex-math></inline-formula>-functional and weighted functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"18 1","pages":"218-230"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75494743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Better degree of approximation by modified Bernstein-Durrmeyer type operators 改进的Bernstein-Durrmeyer型算子具有更好的近似度
Mathematical foundations of computing Pub Date : 2022-01-01 DOI: 10.3934/mfc.2021024
P. Agrawal, S. Güngör, Abhishek Kumar
{"title":"Better degree of approximation by modified Bernstein-Durrmeyer type operators","authors":"P. Agrawal, S. Güngör, Abhishek Kumar","doi":"10.3934/mfc.2021024","DOIUrl":"https://doi.org/10.3934/mfc.2021024","url":null,"abstract":"<p style='text-indent:20px;'>In the present article we investigate a Durrmeyer variant of the generalized Bernstein-operators based on a function <inline-formula><tex-math id=\"M1\">begin{document}$ tau(x), $end{document}</tex-math></inline-formula> where <inline-formula><tex-math id=\"M2\">begin{document}$ tau $end{document}</tex-math></inline-formula> is infinitely differentiable function on <inline-formula><tex-math id=\"M3\">begin{document}$ [0, 1], ; tau(0) = 0, tau(1) = 1 $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M4\">begin{document}$ tau^{prime }(x)>0, ;forall;; xin[0, 1]. $end{document}</tex-math></inline-formula> We study the degree of approximation by means of the modulus of continuity and the Ditzian-Totik modulus of smoothness. A Voronovskaja type asymptotic theorem and the approximation of functions with derivatives of bounded variation are also studied. By means of a numerical example, finally we illustrate the convergence of these operators to certain functions through graphs and show a careful choice of the function <inline-formula><tex-math id=\"M5\">begin{document}$ tau(x) $end{document}</tex-math></inline-formula> leads to a better approximation than the generalized Bernstein-Durrmeyer type operators considered by Kajla and Acar [<xref ref-type=\"bibr\" rid=\"b11\">11</xref>].</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"17 42","pages":"75"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72489625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信