{"title":"Szász-Jakimovski-Leviatan类型算子序列的收敛性及相关结果","authors":"M. Nasiruzzaman","doi":"10.3934/mfc.2022019","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres <inline-formula><tex-math id=\"M1\">\\begin{document}$ K $\\end{document}</tex-math></inline-formula>-functional and weighted functions.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"18 1","pages":"218-230"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results\",\"authors\":\"M. Nasiruzzaman\",\"doi\":\"10.3934/mfc.2022019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ K $\\\\end{document}</tex-math></inline-formula>-functional and weighted functions.</p>\",\"PeriodicalId\":93334,\"journal\":{\"name\":\"Mathematical foundations of computing\",\"volume\":\"18 1\",\"pages\":\"218-230\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical foundations of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/mfc.2022019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres \begin{document}$ K $\end{document}-functional and weighted functions.
Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results
In the present article, we construct the Szász-Jakimovski-Leviatan operators in parametric form by including the sequences of continuous functions and then investigate the approximation properties. We have successfully estimated the convergence by use of modulus of continuity in the spaces of Lipschitz functions, Peetres \begin{document}$ K $\end{document}-functional and weighted functions.