Integral modification of Beta-Apostol-Genocchi operators

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
N. Bhardwaj, N. Deo
{"title":"Integral modification of Beta-Apostol-Genocchi operators","authors":"N. Bhardwaj, N. Deo","doi":"10.3934/mfc.2022039","DOIUrl":null,"url":null,"abstract":"We propose certain Durrmeyer-type operators for Apostol-Genocchi polynomials in this research. We explore these operators' approximation attributes and measure the rate of convergence. In addition, we present a direct approximation theorem based on first and second-order modulus of continuity, local approximation findings for Lipschitz class functions and a direct theorem based on the typical modulus of continuity. Finally, we showed a graph illustrating the convergence of the suggested operators and an error table.","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":"88 1","pages":"474-483"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2022039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

We propose certain Durrmeyer-type operators for Apostol-Genocchi polynomials in this research. We explore these operators' approximation attributes and measure the rate of convergence. In addition, we present a direct approximation theorem based on first and second-order modulus of continuity, local approximation findings for Lipschitz class functions and a direct theorem based on the typical modulus of continuity. Finally, we showed a graph illustrating the convergence of the suggested operators and an error table.
β - apostoll - genocchi算子的积分修正
本文提出了apostoll - genocchi多项式的durrmeyer型算子。我们探索了这些算子的近似属性,并测量了收敛速度。此外,我们给出了基于一阶和二阶连续模的直接逼近定理、Lipschitz类函数的局部逼近结果和基于典型连续模的直接定理。最后,我们给出了一个图来说明建议算子的收敛性和一个误差表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信