Better approximation by a Durrmeyer variant of $ \alpha- $Baskakov operators

IF 1.3 Q3 COMPUTER SCIENCE, THEORY & METHODS
P. Agrawal, J. Singh
{"title":"Better approximation by a Durrmeyer variant of $ \\alpha- $Baskakov operators","authors":"P. Agrawal, J. Singh","doi":"10.3934/mfc.2021040","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>The aim of this paper is to study some approximation properties of the Durrmeyer variant of <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\alpha $\\end{document}</tex-math></inline-formula>-Baskakov operators <inline-formula><tex-math id=\"M3\">\\begin{document}$ M_{n,\\alpha} $\\end{document}</tex-math></inline-formula> proposed by Aral and Erbay [<xref ref-type=\"bibr\" rid=\"b3\">3</xref>]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr<inline-formula><tex-math id=\"M4\">\\begin{document}$ \\ddot{u} $\\end{document}</tex-math></inline-formula>ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions <inline-formula><tex-math id=\"M5\">\\begin{document}$ e_0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M6\">\\begin{document}$ e_2 $\\end{document}</tex-math></inline-formula> and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators <inline-formula><tex-math id=\"M7\">\\begin{document}$ M_{n,\\alpha} $\\end{document}</tex-math></inline-formula> and show the comparison of its rate of approximation vis-a-vis the modified operators.</p>","PeriodicalId":93334,"journal":{"name":"Mathematical foundations of computing","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical foundations of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/mfc.2021040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of this paper is to study some approximation properties of the Durrmeyer variant of \begin{document}$ \alpha $\end{document}-Baskakov operators \begin{document}$ M_{n,\alpha} $\end{document} proposed by Aral and Erbay [3]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr\begin{document}$ \ddot{u} $\end{document}ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions \begin{document}$ e_0 $\end{document} and \begin{document}$ e_2 $\end{document} and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators \begin{document}$ M_{n,\alpha} $\end{document} and show the comparison of its rate of approximation vis-a-vis the modified operators.

由$ \ α - $Baskakov算子的Durrmeyer变体得到更好的近似
The aim of this paper is to study some approximation properties of the Durrmeyer variant of \begin{document}$ \alpha $\end{document}-Baskakov operators \begin{document}$ M_{n,\alpha} $\end{document} proposed by Aral and Erbay [3]. We study the error in the approximation by these operators in terms of the Lipschitz type maximal function and the order of approximation for these operators by means of the Ditzian-Totik modulus of smoothness. The quantitative Voronovskaja and Gr\begin{document}$ \ddot{u} $\end{document}ss Voronovskaja type theorems are also established. Next, we modify these operators in order to preserve the test functions \begin{document}$ e_0 $\end{document} and \begin{document}$ e_2 $\end{document} and show that the modified operators give a better rate of convergence. Finally, we present some graphs to illustrate the convergence behaviour of the operators \begin{document}$ M_{n,\alpha} $\end{document} and show the comparison of its rate of approximation vis-a-vis the modified operators.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信