Biotechnology and applied biochemistry最新文献

筛选
英文 中文
In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside. 一种新型高溶解性抗黑色素瘤黄酮葡糖苷的硅引导合成:Skullcapflavone II-6'-O-β-glucoside。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-24 DOI: 10.1002/bab.2685
Te-Sheng Chang, Hsiou-Yu Ding, Tzi-Yuan Wang, Jiumn-Yih Wu, Po-Wei Tsai, Khyle S Suratos, Lemmuel L Tayo, Guan-Cheng Liu, Huei-Ju Ting
{"title":"In silico-guided synthesis of a new, highly soluble, and anti-melanoma flavone glucoside: Skullcapflavone II-6'-O-β-glucoside.","authors":"Te-Sheng Chang, Hsiou-Yu Ding, Tzi-Yuan Wang, Jiumn-Yih Wu, Po-Wei Tsai, Khyle S Suratos, Lemmuel L Tayo, Guan-Cheng Liu, Huei-Ju Ting","doi":"10.1002/bab.2685","DOIUrl":"https://doi.org/10.1002/bab.2685","url":null,"abstract":"<p><p>Guided by in silico analysis tools and biotransformation technology, new derivatives of natural compounds with heightened bioactivities can be explored and synthesized efficiently. In this study, in silico data mining and molecular docking analysis predicted that glucosides of skullcapflavone II (SKII) were new flavonoid compounds and had higher binding potential to oncogenic proteins than SKII. These benefits guided us to perform glycosylation of SKII by utilizing four glycoside hydrolases and five glycosyltransferases (GTs). Findings unveiled that exclusive glycosylation of SKII was achieved solely through the action of GTs, with Bacillus subtilis BsUGT489 exhibiting the highest catalytic glycosylation efficacy. Structure analysis determined the glycosylated product as a novel compound, skullcapflavone II-6'-O-β-glucoside (SKII-G). Significantly, the aqueous solubility of SKII-G exceeded its precursor, SKII, by 272-fold. Furthermore, SKII-G demonstrated noteworthy anti-melanoma activity against human A2058 cells, exhibiting an IC<sub>50</sub> value surpassing that of SKII by 1.4-fold. Intriguingly, no substantial cytotoxic effects were observed in a murine macrophage cell line, RAW 264.7. This promising anti-melanoma activity without adverse effects on macrophages suggests that SKII-G could be a potential candidate for further preclinical and clinical studies. The in silico tool-guided synthesis of a new, highly soluble, and potent anti-melanoma glucoside, SKII-G, provides a rational design to facilitate the future discovery of new and bioactive compounds.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142495525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing pectin lyase production using the one-factor-at-a-time method and response surface methodology. 利用一次一因素法和响应面法优化果胶裂解酶的生产。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-21 DOI: 10.1002/bab.2686
Ertuğrul Gül, Arzu Yadigar Dursun, Ozlem Tepe, Gonca Akaslan, Fadile Gül Pampal
{"title":"Optimizing pectin lyase production using the one-factor-at-a-time method and response surface methodology.","authors":"Ertuğrul Gül, Arzu Yadigar Dursun, Ozlem Tepe, Gonca Akaslan, Fadile Gül Pampal","doi":"10.1002/bab.2686","DOIUrl":"https://doi.org/10.1002/bab.2686","url":null,"abstract":"<p><p>Pectinases are commonly industrially synthesized by molds. This study aimed to optimize pectin lyase synthesis by a bacterium, Pseudomonas fluorescens, using both the one-factor-at-a-time (OFAT) method and response surface methodology. First, on optimization of pectin lyase fermentation by the OFAT method, the effects of pectin, peptone, yeast extract, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, pH, and salts were investigated. The highest pectin lyase activity was determined to be 28.63 U/mL at pH 8, 30°C, with 1% (w/v) pectin and 0.14% (w/v) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentration at the 90th hour. The effect of substrate inhibition on the microbial growth was also investigated, and the results showed that the process can be described by noncompetitive inhibition model. The values of kinetic constants were determined as µ<sub>m</sub> = 0.175 h<sup>-1</sup>, K<sub>S</sub> = 6.931 g/L, and, K<sub>I</sub> = 6.932 g/L by nonlinear regression analysis. It was reported that pectin lyase enzymes exhibited peak activity at 50°C and pH 8. Finally, response surface methodology (RSM) was utilized to optimize pH, concentrations of ammonium sulfate, and pectin, which were chosen as independent variables. The interactions between these variables were also examined. According to RSM, the optimum values of the parameters to achieve a maximum pectin lyase activity of 35.62 U/mL were determined to be pH 7.97, 1.25% (w/v) pectin concentration, and 0.25% (w/v) (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> concentration.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Designing a novel multi-epitope antigen for diagnosing human cytomegalovirus infection: An immunoinformatics approach. 设计用于诊断人类巨细胞病毒感染的新型多表位抗原:免疫信息学方法
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-17 DOI: 10.1002/bab.2677
Marzieh Asadi, Younes Ghasemi, Navid Nezafat, Bahador Sarkari, Maryam Baneshi, Zohreh Mostafavi-Pour, Mohammad Hossein Anbardar, Amir Savardashtaki
{"title":"Designing a novel multi-epitope antigen for diagnosing human cytomegalovirus infection: An immunoinformatics approach.","authors":"Marzieh Asadi, Younes Ghasemi, Navid Nezafat, Bahador Sarkari, Maryam Baneshi, Zohreh Mostafavi-Pour, Mohammad Hossein Anbardar, Amir Savardashtaki","doi":"10.1002/bab.2677","DOIUrl":"https://doi.org/10.1002/bab.2677","url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) infection can lead to congenital infections and severe complications, particularly in immunocompromised individuals. Current serological tests for diagnosing HCMV infection often face limitations in sensitivity and specificity. Developing multi-epitope antigens for serological assays offers the potential for enhancing diagnostic accuracy. This study aimed to design a novel multi-epitope antigen for HCMV infection diagnosis using immunoinformatic approaches. Five tegument proteins (universal protein resource [UniProt] ID: Po8318, Po6725, F5HC97, Q6RX10, and F5HC05) were selected based on their antigenic properties and literature review. Six linear B-cell epitopes were predicted within conserved regions of each antigen sequence and linked with appropriate linkers. The designed multi-epitope antigen underwent thorough evaluation for physicochemical properties, solubility, antigenicity, and cross-reactivity. Additionally, the three-dimensional structure of the antigen was predicted, refined, and validated. The nucleotide sequence of the designed antigen was optimized for successful expression in Escherichia coli and inserted into a pET23a (+) vector. Immunoinformatic analysis revealed that the multi-epitope antigen exhibits stability, antigenicity, and lacks cross-reactivity. Our findings suggest that this multi-epitope antigen is a promising candidate for diagnosing HCMV infection. However, further validation through laboratory testing is required to confirm its diagnostic efficacy.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serum-free medium for recombinant protein expression in insect cells. 用于昆虫细胞重组蛋白表达的无血清培养基。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-14 DOI: 10.1002/bab.2680
Shao-Lei Geng, Ying Zou, Zhi-Yuan Bai, Min Zhang, Chong Wang, Tian-Yun Wang
{"title":"Serum-free medium for recombinant protein expression in insect cells.","authors":"Shao-Lei Geng, Ying Zou, Zhi-Yuan Bai, Min Zhang, Chong Wang, Tian-Yun Wang","doi":"10.1002/bab.2680","DOIUrl":"https://doi.org/10.1002/bab.2680","url":null,"abstract":"<p><p>The baculovirus expression vector system (BEVS) has been widely used to produce recombinant proteins because of several advantages, such as eukaryotic post-translational modifications similar to those in mammalian cells, high expression levels and safety, and large gene capacity. Usually, insect cell culture requires 5%‒10% fetal bovine serum, which has many adverse effects, including high cost, heterogeneity between batches, complex composition, and pollution risks. Therefore, serum-free medium (SFM) is indispensable for the production of recombinant proteins in insect cell culture. Here, the most commonly used insect cell lines and three insect cell media, namely basic medium, SFM, and chemically defined medium, are summarized. The basic components of insect cell SFM are similar to those of other cells but contain special components. The components, functions, and issues of different SFM used for insect cell culture are reviewed. In recent years, some special additives have been demonstrated to increase recombinant protein expression yield and quality in BEVS, and the functions and possible mechanisms of small-molecule additives are reviewed herein. Finally, future perspectives of SFM used in BEVS for recombinant protein production are discussed.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational insights in design of Crimean-Congo hemorrhagic fever virus conserved immunogenic nucleoprotein peptides containing multiple epitopes. 设计包含多个表位的克里米亚-刚果出血热病毒保守免疫原核蛋白肽的计算见解。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-14 DOI: 10.1002/bab.2679
Neha Kaushal, Manoj Baranwal
{"title":"Computational insights in design of Crimean-Congo hemorrhagic fever virus conserved immunogenic nucleoprotein peptides containing multiple epitopes.","authors":"Neha Kaushal, Manoj Baranwal","doi":"10.1002/bab.2679","DOIUrl":"https://doi.org/10.1002/bab.2679","url":null,"abstract":"<p><p>Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to Nairoviridae family and has tripartite RNA genome. It is endemic in various countries of Asia, Africa, and Europe and is primarily transmitted by Hyalomma ticks but nosocomial transmission also been reported. Vaccines for CCHF are in early phase of clinical trial; therefore, this work is centered on identification of potential immunogenic peptide as vaccine candidates with application of different immunoinformatics approaches. Eleven conserved (>90%) peptides of CCHFV nucleoprotein were selected for CD8<sup>+</sup> T-cell (NetMHCpan 4.1b and NetCTLpan 1.1 server) and CD4<sup>+</sup> T-cell (NetMHCIIpan-4.0 server and Tepitool) epitope prediction. Three peptides containing multiple CD8<sup>+</sup> and CD4<sup>+</sup> T-cell and B-cell epitopes were identified on basis of consensus prediction approach. Peptides displayed good antigenicity score of 0.45-0.68 and predicted to bind with diverse human leukocyte antigen (HLA) alleles. Molecular docking was performed with epitopes to HLA and HLA-epitopes complex to T-cell receptor (TCR). In most of the cases, docked complex of HLA-epitope and HLA-epitopes-TCR have the binding energy close to respective natural bound peptide complex with HLA and TCR. Molecular dynamic simulation also revealed that HLA-peptide complexes have minimum fluctuation and deviation than HLA-peptide-TCR docked over 50 ns simulation run. Considering these findings, identified peptides can serve as potential vaccine candidates for CCHFV disease.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In silico and in vitro evaluation of a PE38 and Nb-based recombinant immunotoxin targeting the GRP78 receptor in cancer cells. 针对癌细胞中 GRP78 受体的 PE38 和 Nb 重组免疫毒素的硅学和体外评估。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-13 DOI: 10.1002/bab.2678
Mona Khoshbakht, Mohammad Mahdi Forghanifard, Hossein Aghamollaei, Jafar Amani
{"title":"In silico and in vitro evaluation of a PE38 and Nb-based recombinant immunotoxin targeting the GRP78 receptor in cancer cells.","authors":"Mona Khoshbakht, Mohammad Mahdi Forghanifard, Hossein Aghamollaei, Jafar Amani","doi":"10.1002/bab.2678","DOIUrl":"https://doi.org/10.1002/bab.2678","url":null,"abstract":"<p><p>Cancer is a global health problem despite the most developed therapeutic modalities. The delivery of specific therapeutic agents to a target increases the effectiveness of cancer treatment by reducing side effects and post-treatment issues. Our aim in this study was to design a recombinant protein consisting of nanobody molecules and exotoxin that targets the surface GRP78 receptor on tumor cells. Bioinformatics methods make drug design and recombinant protein evaluation much easier before the laboratory steps. Two constructs were designed from a single-variable domain on heavy chain nanobody domains and PE toxin domains II, Ib, and III. The physicochemical properties, secondary structure, and solubility of the chimeric protein were analyzed using different software. Prostate cancer DU-145 and breast cancer MDA-MB-468 cell lines were used as GRP78-positive and negative controls, respectively. Accordingly, the cytotoxicity, binding affinity, cell internalization, and apoptosis were evaluated using MTT, enzyme-linked immunosorbent assay, and western blot. The results showed that in the DU-145 cell line, the cytotoxicity of two recombinant immunotoxins is dose and time-dependent. In MDA-MB-468 and HEK-293 cells, such an event does not occur. It is possible that two constructs designed for immunotoxins can attach to GRP78-positive cancer cells and then eradicate cancer cells by internalization and apoptosis. As our in vitro results were in line with in silico data confirming the Bioinformatics predictions, it can be concluded that the designed recombinant immunotoxins may exhibit therapeutic potential against GRP78-positive tumor cells.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142458496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway. 青蒿通过 IGF-IIR/Drp1/GATA4 信号通路抑制线粒体功能障碍,从而减轻多柔比星诱导的心脏毒性。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-07 DOI: 10.1002/bab.2671
Jhong-Kuei Chen, Samiraj Ramesh, Md Nazmul Islam, Marthandam Asokan Shibu, Chia-Hua Kuo, Dennis Jine-Yuan Hsieh, Shinn-Zong Lin, Wei-Wen Kuo, Chih-Yang Huang, Tsung-Jung Ho
{"title":"Artemisia argyi mitigates doxorubicin-induced cardiotoxicity by inhibiting mitochondrial dysfunction through the IGF-IIR/Drp1/GATA4 signaling pathway.","authors":"Jhong-Kuei Chen, Samiraj Ramesh, Md Nazmul Islam, Marthandam Asokan Shibu, Chia-Hua Kuo, Dennis Jine-Yuan Hsieh, Shinn-Zong Lin, Wei-Wen Kuo, Chih-Yang Huang, Tsung-Jung Ho","doi":"10.1002/bab.2671","DOIUrl":"https://doi.org/10.1002/bab.2671","url":null,"abstract":"<p><p>Doxorubicin (DOX) is mostly utilized as a wide range of antitumor anthracycline to treat different cancers. The severe antagonistic impacts of DOX on cardiotoxicity constrain its clinical application. Many mechanisms are involved in cardiac toxicity induced by DOX in the human body. Mitochondria is a central part of fatty acid and glucose metabolism. Thus, impaired mitochondrial metabolism can increase heart failure risk, which can play a vital role in cardiomyocyte mitochondrial dysfunction. This study aimed to assess the possible cardioprotective effect of water-extracted Artemisia argyi (AA) against the side effect of DOX in H9c2 cells and whether these protective effects are mediated through IGF-IIR/Drp1/GATA4 signaling pathways. Although several studies proved that AA extract has benefits for various diseases, its cardiac effects have not yet been identified. The H9c2 cells were exposed to 1 μM to establish a model of cardiac toxicity. The results revealed that water-extracted AA could block the expression of IGF-IIR/calcineurin signaling pathways induced by DOX. Notably, our results also showed that AA treatment markedly attenuated Akt phosphorylation and cleaved caspase 3, and the nuclear translocation markers NFATC3 and p-GATA4. Using actin staining for hypertrophy, we determined that AA can reduce the effect of mitochondrial reactive oxygen species and cell size. These findings suggest that water-extracted AA could be a suitable candidate for preventing DOX-induced cardiac damage.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. 通过抑制腺苷-5'-单磷酸激活的蛋白激酶介导的 NOD 样受体热蛋白结构域相关蛋白 3,色真菌素能减轻游离脂肪酸诱导的内皮炎症。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-02 DOI: 10.1002/bab.2676
Qing Lan, Jian Chen, Yongqiang Yang
{"title":"Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase.","authors":"Qing Lan, Jian Chen, Yongqiang Yang","doi":"10.1002/bab.2676","DOIUrl":"https://doi.org/10.1002/bab.2676","url":null,"abstract":"<p><p>Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. 设计基于酪蛋白的纳米载体,向白血病细胞靶向输送多柔比星。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-26 DOI: 10.1002/bab.2662
Ali Beigrezaei, Ronak Rafipour
{"title":"Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells.","authors":"Ali Beigrezaei, Ronak Rafipour","doi":"10.1002/bab.2662","DOIUrl":"https://doi.org/10.1002/bab.2662","url":null,"abstract":"<p><p>Daunorubicin (DAU) is a chemotherapy drug approved for the treatment of some cancers. However, the clinical compatibility of DAU is limited due to its lack of specificity and its highly toxic effects, which interfere with normal cells. This toxicity can be reduced with nanocarriers and targeted drug delivery systems. In this study, to develop the drug delivery of DAU, the surface of synthesized nanoparticles was modified by folic acid to target cancer cells optimally. Encapsulation of DAU in protein sodium caseinate (NaCAS) was done by adding calcium ions to bring the casein (CAS) in the solution to a micellar structure to synthesize dense nanoparticles. Fourier-transform infrared spectroscopy transmission, fluorescence spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, and zeta potential studies designed and distinguished the synthesized nanocomplexes. The results showed that CAS nanoparticles successfully encapsulated DAU, and the protein surface was targeted by folic acid. Light scattering analysis determined that the particles with a scattering index number of 306.0 and an average size of 8.117 nm were synthesized. The zeta potential of CAS micelles is more harmful than CAS nanoparticles. This is because calcium ions are added during the formation of CAS nanoparticles during the drug-loading stages. These studies prove that the synthesized \"NaCAS-DAU\" and \"NaCAS-DAU-folic acid\" complexes can be favorable carriers in the targeted drug delivery of cancer drugs.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation. 基于网络药理学和体外实验验证,阐明鹿角菜酸 DM 对乳腺癌的保护机制。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI: 10.1002/bab.2673
Mohammed Sharif Swallah, Precious Bondzie-Quaye, Xin Yu, Monia Ravelonandrasana Fetisoa, Chang-Sheng Shao, Qing Huang
{"title":"Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation.","authors":"Mohammed Sharif Swallah, Precious Bondzie-Quaye, Xin Yu, Monia Ravelonandrasana Fetisoa, Chang-Sheng Shao, Qing Huang","doi":"10.1002/bab.2673","DOIUrl":"https://doi.org/10.1002/bab.2673","url":null,"abstract":"<p><p>Ganoderma lucidum, a popular medicinal fungus, has been utilized to treat a variety of diseases. It possesses a unique therapeutic and pharmacological reputation in suppressing cancer/tumor progression, especially breast cancer, due to its embedded rich bioactive chemical constituents, mainly triterpenoids (ganoderic acids). The most prevalent malignant tumor in women with a high mortality and morbidity rate is breast cancer. Ganoderic acids A, D, DM, F, and H are evidenced in previous research to have breast cancer-preventive properties by exhibiting autophagic and apoptosis, anti-proliferative, and anti-angiogenesis effects. However, the anti-breast cancer mechanism remains unclear. The putative targets of the ganoderic acids were further determined using bioinformatics techniques and molecular docking calculation. Finally, the key targets were verified in vitro. A total of 53 potential target proteins associated with 202 pathways were predicted to be related to breast cancer. The potential targets were narrowed down to six key targets (AKT1, PIK3CA, epidermal growth factor receptor [EGFR], STAT1, ESR1, and CTNNB1), using different algorithms of the CytoHubba plugin, which were further validated using molecular docking analysis. The ganoderic acid DM (GADM) and the targets (PIK3CA and EGFR) with the strongest interactions were validated via MDA-MB-231 and MCF7 cells. The expression level of PIK3CA in both MDA-MB-231 and MCF7 cells was dose-dependently suppressed by GADM, whereas EGFR expression was unexpectedly increased, which warrants further investigation. These data indicated that the network pharmacology-based prediction of GADM targets for treating human breast cancer could be reliable.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信