Biotechnology and applied biochemistry最新文献

筛选
英文 中文
Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. 通过抑制腺苷-5'-单磷酸激活的蛋白激酶介导的 NOD 样受体热蛋白结构域相关蛋白 3,色真菌素能减轻游离脂肪酸诱导的内皮炎症。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-10-02 DOI: 10.1002/bab.2676
Qing Lan, Jian Chen, Yongqiang Yang
{"title":"Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase.","authors":"Qing Lan, Jian Chen, Yongqiang Yang","doi":"10.1002/bab.2676","DOIUrl":"https://doi.org/10.1002/bab.2676","url":null,"abstract":"<p><p>Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells. 设计基于酪蛋白的纳米载体,向白血病细胞靶向输送多柔比星。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-26 DOI: 10.1002/bab.2662
Ali Beigrezaei, Ronak Rafipour
{"title":"Design of casein-based nanocarriers for targeted delivery of daunorubicin to leukemia cells.","authors":"Ali Beigrezaei, Ronak Rafipour","doi":"10.1002/bab.2662","DOIUrl":"https://doi.org/10.1002/bab.2662","url":null,"abstract":"<p><p>Daunorubicin (DAU) is a chemotherapy drug approved for the treatment of some cancers. However, the clinical compatibility of DAU is limited due to its lack of specificity and its highly toxic effects, which interfere with normal cells. This toxicity can be reduced with nanocarriers and targeted drug delivery systems. In this study, to develop the drug delivery of DAU, the surface of synthesized nanoparticles was modified by folic acid to target cancer cells optimally. Encapsulation of DAU in protein sodium caseinate (NaCAS) was done by adding calcium ions to bring the casein (CAS) in the solution to a micellar structure to synthesize dense nanoparticles. Fourier-transform infrared spectroscopy transmission, fluorescence spectroscopy, UV-Vis spectroscopy, field emission scanning electron microscopy, and zeta potential studies designed and distinguished the synthesized nanocomplexes. The results showed that CAS nanoparticles successfully encapsulated DAU, and the protein surface was targeted by folic acid. Light scattering analysis determined that the particles with a scattering index number of 306.0 and an average size of 8.117 nm were synthesized. The zeta potential of CAS micelles is more harmful than CAS nanoparticles. This is because calcium ions are added during the formation of CAS nanoparticles during the drug-loading stages. These studies prove that the synthesized \"NaCAS-DAU\" and \"NaCAS-DAU-folic acid\" complexes can be favorable carriers in the targeted drug delivery of cancer drugs.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation. 基于网络药理学和体外实验验证,阐明鹿角菜酸 DM 对乳腺癌的保护机制。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI: 10.1002/bab.2673
Mohammed Sharif Swallah, Precious Bondzie-Quaye, Xin Yu, Monia Ravelonandrasana Fetisoa, Chang-Sheng Shao, Qing Huang
{"title":"Elucidating the protective mechanism of ganoderic acid DM on breast cancer based on network pharmacology and in vitro experimental validation.","authors":"Mohammed Sharif Swallah, Precious Bondzie-Quaye, Xin Yu, Monia Ravelonandrasana Fetisoa, Chang-Sheng Shao, Qing Huang","doi":"10.1002/bab.2673","DOIUrl":"https://doi.org/10.1002/bab.2673","url":null,"abstract":"<p><p>Ganoderma lucidum, a popular medicinal fungus, has been utilized to treat a variety of diseases. It possesses a unique therapeutic and pharmacological reputation in suppressing cancer/tumor progression, especially breast cancer, due to its embedded rich bioactive chemical constituents, mainly triterpenoids (ganoderic acids). The most prevalent malignant tumor in women with a high mortality and morbidity rate is breast cancer. Ganoderic acids A, D, DM, F, and H are evidenced in previous research to have breast cancer-preventive properties by exhibiting autophagic and apoptosis, anti-proliferative, and anti-angiogenesis effects. However, the anti-breast cancer mechanism remains unclear. The putative targets of the ganoderic acids were further determined using bioinformatics techniques and molecular docking calculation. Finally, the key targets were verified in vitro. A total of 53 potential target proteins associated with 202 pathways were predicted to be related to breast cancer. The potential targets were narrowed down to six key targets (AKT1, PIK3CA, epidermal growth factor receptor [EGFR], STAT1, ESR1, and CTNNB1), using different algorithms of the CytoHubba plugin, which were further validated using molecular docking analysis. The ganoderic acid DM (GADM) and the targets (PIK3CA and EGFR) with the strongest interactions were validated via MDA-MB-231 and MCF7 cells. The expression level of PIK3CA in both MDA-MB-231 and MCF7 cells was dose-dependently suppressed by GADM, whereas EGFR expression was unexpectedly increased, which warrants further investigation. These data indicated that the network pharmacology-based prediction of GADM targets for treating human breast cancer could be reliable.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis. Annexin A1 可保护牙周韧带细胞免受脂多糖诱导的炎症反应和细胞衰老的影响:对牙周炎的影响
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI: 10.1002/bab.2675
Shuwen Luo, Lin Zhang, Xiaoyu Li, Chunshi Tong
{"title":"Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis.","authors":"Shuwen Luo, Lin Zhang, Xiaoyu Li, Chunshi Tong","doi":"10.1002/bab.2675","DOIUrl":"https://doi.org/10.1002/bab.2675","url":null,"abstract":"<p><p>Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propolis ameliorates renal, liver, and pancreatic lesions in Wistar rats. 蜂胶可改善 Wistar 大鼠的肾脏、肝脏和胰腺病变。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI: 10.1002/bab.2674
Alireza Salehi, Seyed Mohammad Hosseini, Sohrab Kazemi
{"title":"Propolis ameliorates renal, liver, and pancreatic lesions in Wistar rats.","authors":"Alireza Salehi, Seyed Mohammad Hosseini, Sohrab Kazemi","doi":"10.1002/bab.2674","DOIUrl":"https://doi.org/10.1002/bab.2674","url":null,"abstract":"<p><p>This study aimed to evaluate the potential of ethanolic extract of propolis on the secondary lesions of the liver, renal, and pancreatic that were derived by primary colorectal cancer, and comparison of the ethanolic extract of propolis with the vitamin E. The groups included the control, ethanolic extract of propolis, vitamin E, dimethylhydrazine, dimethylhydrazine + ethanolic extract of propolis, and dimethylhydrazine + vitamin E. After 13 weeks of treatment, the blood and tissue samples were taken from all the rats, and alanine transaminase, aspartate transaminase, alkaline phosphatase, uric acid, creatinine, blood urea nitrogen, insulin, amylase, and lipase indices along with the tissue pathological examination of the kidney, liver, and pancreas were evaluated. Ethanolic extract of propolis effectively alleviated the colorectal cancer-induced secondary lesions in the liver by significantly lowering the alanine transaminase significantly. Ethanolic extract of propolis significantly decreased uric acid in rats; and also significantly elevated the pancreatic insulin. In addition, inflammation and cell necrosis indices in all these tissues were significantly reduced when ethanolic extract of propolis was consumed compared to the dimethylhydrazine group. It seemed ethanolic extract of propolis showed high antioxidant, anticancer, and anti-inflammatory potentials, and can be used practically to reduce the side lesions of colorectal cancer.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats. 利用生物信息学方法鉴定扩张型心肌病相关关键基因,并评估鞣酸和谷氨酸钠对大鼠的影响。
IF 3.2 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-25 DOI: 10.1002/bab.2670
Habibe Karadas, Hilal Tosun, Hamid Ceylan
{"title":"Identification of dilated cardiomyopathy-linked key genes by bioinformatics methods and evaluating the impact of tannic acid and monosodium glutamate in rats.","authors":"Habibe Karadas, Hilal Tosun, Hamid Ceylan","doi":"10.1002/bab.2670","DOIUrl":"https://doi.org/10.1002/bab.2670","url":null,"abstract":"<p><p>Dilated cardiomyopathy (DCM) is the most common type of myocardial dysfunction, affecting mostly young adults, but its therapeutic diagnosis and biomarkers for prognosis are lacking. This study aimed to investigate the possible effect of the common food additive monosodium glutamate (MSG) and tannic acid (TA), a phenolic compound, on the key molecular actors responsible for DCM. DCM-related publicly available microarray datasets (GSE120895, GSE17800, and GSE19303) were downloaded from the comprehensive Gene Expression Omnibus (GEO) database, and analyzed to identify differentially expressed genes (DEGs). By integrating DEGs and gene-disease validity curation results, overlapping genes were screened and identified as hub genes. Protein-protein interaction (PPI) network and ontology analysis were performed to make sense of the identified biological data. Finally, mRNA expression changes of identified hub genes in the heart tissues of rats treated with MSG and TA were measured by the qPCR method. Six upregulated (IGF1, TTN, ACTB, LMNA, EDN1, and NPPB) DEGs were identified between the DCM and healthy control samples as the hub genes. qPCR results revealed that the mRNA levels of these genes involved in DCM development increased significantly in rat heart tissues exposed to MSG. In contrast, this increase was remarkably alleviated by TA treatment. Our results provide new insights into critical molecular mechanisms that should be focused on in future DCM studies. Moreover, MSG may play a critical role in DCM formation, and TA may be used as a promising therapeutic agent in DCM.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis RBPMS-AS1 通过增强 PLCL1 介导的热休克抑制宫颈癌细胞的 miR-19a-3p
IF 2.8 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-19 DOI: 10.1002/bab.2667
Lina Huang, Qinqin Shen, Kun Yu, Jie Yang, Xiuxiu Li
{"title":"RBPMS-AS1 sponges miR-19a-3p to restrain cervical cancer cells via enhancing PLCL1-mediated pyroptosis","authors":"Lina Huang, Qinqin Shen, Kun Yu, Jie Yang, Xiuxiu Li","doi":"10.1002/bab.2667","DOIUrl":"https://doi.org/10.1002/bab.2667","url":null,"abstract":"Cervical cancer (CC) poses a threat to human health. Enhancing pyroptosis can prevent the proliferation and epithelial–mesenchymal transition (EMT) of tumor cells. This study aims to reveal the candidates that modulate pyroptosis in CC. Accordingly, the common microRNAs (miRNAs/miRs) that were sponged by RBPMS antisense RNA 1 (RBPMS-AS1) and could target Phospholipase C–Like 1 (PLCL1) were intersected. The expression of PBPMS-AS1/miR-19a-3p (candidate miRNA)/PLCL1 was predicted in cervical squamous cell carcinoma (CESC), by which the expression location of RBPMS-AS1 and the binding between RBPMS-AS1/PLCL1 and miR-19a-3p were analyzed. The targeting relationship between RBPMS-AS1/PLCL1 and miR-19a-3p was confirmed by dual-luciferase reporter assay. After the transfection, cell counting kit-8 assay, colony formation assay, quantitative reverse transcription PCR, and Western blot were implemented for cell viability and proliferation analysis as well as gene and protein expression quantification analysis. Based on the results, RBPMS-AS1 and PLCL1 were lowly expressed, yet miR-19a-3p was highly expressed in CESC. RBPMS-AS1 overexpression diminished the proliferation and expressions of N-cadherin, vimentin, and miR-19a-3p, yet enhanced those of E-cadherin, PLCL1, and pyroptosis-relevant proteins (inteleukin-1β, caspase-1, and gasdermin D N-terminal). However, the above RBPMS-AS1 overexpression–induced effects were counteracted in the presence of miR-19a-3p. There also existed a targeting relationship and negative interplay between PLCL1 and miR-19a-3p. In short, RBPMS-AS1 sponges miR-19a-3p and represses the growth and EMT of CC cells via enhancing PLCL1-mediated pyroptosis.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and characterization of piperine-modified mesoporous silica nanoparticles for biomedical applications 用于生物医学应用的哌啶修饰介孔二氧化硅纳米粒子的合成与表征
IF 2.8 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-19 DOI: 10.1002/bab.2672
Shimi Mohan, Jarin Thankaswamy
{"title":"Synthesis and characterization of piperine-modified mesoporous silica nanoparticles for biomedical applications","authors":"Shimi Mohan, Jarin Thankaswamy","doi":"10.1002/bab.2672","DOIUrl":"https://doi.org/10.1002/bab.2672","url":null,"abstract":"Mesoporous silica nanoparticles (MSNs) have displayed high-potential prospects in biomedical use, especially for drug delivery due to large surface area, tunable pore size and simple surface functionalization. The objective behind the present research is to synthesize and profile piperine-modified MSNs for their preparation due to antioxidative anticarcinogenic, anti-inflammatory properties of the alkaloid chosen as a modifier. In the study, silica piperine nanoparticles (SPN) were fabricated based on a modified Stöber method. Characterization techniques including SEM, TEM, AFM, FTIR, XRD, and DSC showed significant differences of incorporated piperine in the production process to plain MSN properties. Piperine was observed to inhibit nanoparticles’ growth so that they became smaller, heterogeneous, with a changed morphology and surface chemistry. As a strong confirmation of covalent incorporation, spectroscopic data showed the presence of electrons in the piperine's functional group that were exchanged into some silanol groups and removed excessive surface energy. The antioxidant activity of SPNs revealed that the silica matrix, and moreover bioactive piperine combination resulted to significant increase in enhanced antioxidant potential. In general, the results of this study offer meaningful lessons about the utilization and manipulation of piperine to suit MSN in a bid to optimize them for biomedical uses such as drug delivery applications where its antioxidant characteristics may bring therapeutic benefits. This holistic characterization and standardization of piperine-modified MSNs sets the solid stage for further project practice and advance adjustment in aluminosilicate nanostructures designed for biomedical application.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver secnidazole nano-hybrid emulsion-based probiotics as a novel antifungal formula against multidrug-resistant vaginal pathogens 基于纳米银瞬效唑杂化乳液的益生菌是一种新型抗真菌配方,可用于抗耐多药的阴道病原体
IF 2.8 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-15 DOI: 10.1002/bab.2663
Farag M. Mosallam, Eman A. Helmy, Hanan S. El-Bastawisy, Ahmed I. El-Batal
{"title":"Silver secnidazole nano-hybrid emulsion-based probiotics as a novel antifungal formula against multidrug-resistant vaginal pathogens","authors":"Farag M. Mosallam, Eman A. Helmy, Hanan S. El-Bastawisy, Ahmed I. El-Batal","doi":"10.1002/bab.2663","DOIUrl":"https://doi.org/10.1002/bab.2663","url":null,"abstract":"This study presents a novel approach to manage vaginal infections due to Candidiasis, utilizing a novel silver secnidazole nano-hybrid emulsion (Ag-Secn-NHE)-based probiotics and free Ag-Secn-NHE. Ag-Secn-NHE was prepared by simple homogenization‒ultrasonication technique and validated by using a ultraviolet‒visible scan, dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, and zeta potential. <i>Saccharomyces cerevisiae</i> (RCMB 002Y001) is the most effective probiotic-producing organism that demonstrates significant effects when combined with Ag-Secn-NHE. Ag-Secn-NHE-based probiotics showed significant antifungal effect compared to free Ag-Secn-NHE, silver nitrate, silver nanoparticles, secnidazole, secnidazole nanoemulsion, and commercial vaginal wash against multidrug-resistant vaginal pathogens. The highest inhibitory effect was achieved with Ag-Secn-NHE-based probiotic against <i>Candida auris</i>, <i>Candida albicans</i>, and <i>Cryptococcus neoformans</i> with minimal inhibitory concentration (MIC) 0.625 ± 0.002, 0.00625:1.25 ± 0.012 and 0.00625:1.25 ± 0.032 mg/mL, respectively, in comparison with Ag-Secn-NHE that show MIC at 0.00625:1.25 ± 0.612, 0.0125:2.5 ± 0.812, and 0.0125:2.5 ± 0.112 mg/mL (Ag:Secn). Ag-Secn-NHE-based- probiotic show minimum fungicidal concentration (MFC) at range from 2.5 to 20 mg/mL, wherever free Ag-Secn-NHE show MFC range from 5 to &gt;20 mg/mL. Additionally, Ag-Secn-NHE-based probiotics have 75% inhibition of biofilm formation against <i>C. auris</i> and 60% inhibition of biofilm formation against both <i>Cryptococcus neoformans</i> and <i>C. albicans</i> in comparison with free Ag-Secn-NHE. Time-kill curves showed that the antifungal effect of Ag-Secn-NHE-based probiotics was fungistatic at 2MIC value after 4 h and after 16 h for Ag-Secn-NHE. TEM photographs showed that <i>C. auris</i> cells treated with Ag-Secn-NHE-based probiotic formula revealed severe deformations and distored ultrastructural changes. furthermore, results indicated that the Gamma radiation up to 15 kGy increases production of Ag-Secn-NHE in comparison with non-irradiated one.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salidroside alleviates imiquimod-induced psoriasis by inhibiting GSDMD-driven keratinocyte pyroptosis 水杨梅苷通过抑制 GSDMD 驱动的角质形成细胞凋亡缓解咪喹莫特诱导的牛皮癣
IF 2.8 4区 生物学
Biotechnology and applied biochemistry Pub Date : 2024-09-15 DOI: 10.1002/bab.2668
Mengjie Wang, Tuyagaer Tu, Yangxingyun Wang, Limin Tian, Yuenan Yang
{"title":"Salidroside alleviates imiquimod-induced psoriasis by inhibiting GSDMD-driven keratinocyte pyroptosis","authors":"Mengjie Wang, Tuyagaer Tu, Yangxingyun Wang, Limin Tian, Yuenan Yang","doi":"10.1002/bab.2668","DOIUrl":"https://doi.org/10.1002/bab.2668","url":null,"abstract":"Psoriasis is a common immune-related polygenic inflammatory skin disease. Salidroside (SAL) exerts anti-inflammatory and antioxidant effects and is used to treat skin diseases. However, the specific effects of SAL on psoriasis remain unclear. In this study, we aimed to investigate the efficacy of SAL for psoriasis treatment. Mice were treated with imiquimod (IMQ) to establish an in vivo psoriasis model. Histological analysis was conducted via hematoxylin and eosin staining. Cytokine release was determined via enzyme-linked immunosorbent assay. Additionally, mRNA levels were determined via reverse transcription-quantitative polymerase chain reaction. Protein expression was assessed via Western blotting. Gasdermin D (GSDMD) and Ki-67 expression levels were determined via immunohistochemistry. Caspase 1 and GSDMD expression levels were determined via immunofluorescence assay. Furthermore, macrophage function and keratinocyte pyroptosis were also analyzed via flow cytometry. Cell proliferation was determined using 5-ethynyl-2ʹdeoxyuridine assay. SAL alleviated IMQ-induced psoriasis. IMQ-mediated GSDMD-driven pyroptosis and keratinocyte hyperproliferation promoted M1 macrophage polarization. However, SAL treatment suppressed GSDMD expression, thereby inhibiting keratinocyte proliferation and pyroptosis and promoting M2 macrophage polarization. GSDMD deficiency further promoted the effects of SAL and suppressed psoriasis progression. Overall, our findings suggest that SAL exerts protective effects against psoriasis. Specifically, it exerts anti-inflammatory effects by regulating M2 macrophage polarization and inhibiting keratinocyte pyroptosis-driven proliferation induced by the immune microenvironment in psoriasis.","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信