RadientFusion-XR:基于机器学习的新型冠状病毒检测混合LBP-HOG模型

IF 2.7 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Greeshma K V, J Viji Gripsy
{"title":"RadientFusion-XR:基于机器学习的新型冠状病毒检测混合LBP-HOG模型","authors":"Greeshma K V, J Viji Gripsy","doi":"10.1002/bab.70020","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid and accurate detection of COVID-19 (coronavirus disease 2019) from normal and pneumonia chest x-ray images is essential for timely diagnosis and treatment. The overlapping features in radiology images make it challenging for radiologists to distinguish COVID-19 cases. This research study investigates the effectiveness of combining local binary pattern (LBP) and histogram of oriented gradients (HOG) features with machine learning algorithms to differentiate COVID-19 from normal and pneumonia cases using chest x-rays. The proposed hybrid fusion model \"RadientFusion-XR\" utilizes LBP and HOG features with shallow learning algorithms. The proposed hybrid HOG-LBP fusion model, RadientFusion-XR, detects COVID-19 cases from normal and pneumonia classes. This fusion model provides a comprehensive representation, enabling more precise differentiation among the three classes. This methodology presents a promising and efficient tool for early COVID-19 and pneumonia diagnosis in clinical settings, with potential integration into automated diagnostic systems. The findings highlight the potential of this hybrid feature extraction and a shallow learning approach to improve diagnostic accuracy in chest x-ray analysis significantly. The hybrid model using LBP and HOG features with an ensemble model achieved an exceptional accuracy of 99% for binary class (COVID-19, normal) and 97% for multi-class (COVID-19, normal, pneumonia), respectively. These results demonstrate the efficacy of our hybrid approach in enhancing feature representation and achieving superior classification accuracy. The proposed RadientFusion-XR model with hybrid feature extraction and shallow learning approach significantly increases the accuracy of COVID-19 and pneumonia diagnoses from chest x-rays. The interpretable nature of RadientFusion-XR, alongside its effectiveness and explainability, makes it a valuable tool for clinical applications, fostering trust and enabling informed decision-making by healthcare professionals.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RadientFusion-XR: A Hybrid LBP-HOG Model for COVID-19 Detection Using Machine Learning.\",\"authors\":\"Greeshma K V, J Viji Gripsy\",\"doi\":\"10.1002/bab.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid and accurate detection of COVID-19 (coronavirus disease 2019) from normal and pneumonia chest x-ray images is essential for timely diagnosis and treatment. The overlapping features in radiology images make it challenging for radiologists to distinguish COVID-19 cases. This research study investigates the effectiveness of combining local binary pattern (LBP) and histogram of oriented gradients (HOG) features with machine learning algorithms to differentiate COVID-19 from normal and pneumonia cases using chest x-rays. The proposed hybrid fusion model \\\"RadientFusion-XR\\\" utilizes LBP and HOG features with shallow learning algorithms. The proposed hybrid HOG-LBP fusion model, RadientFusion-XR, detects COVID-19 cases from normal and pneumonia classes. This fusion model provides a comprehensive representation, enabling more precise differentiation among the three classes. This methodology presents a promising and efficient tool for early COVID-19 and pneumonia diagnosis in clinical settings, with potential integration into automated diagnostic systems. The findings highlight the potential of this hybrid feature extraction and a shallow learning approach to improve diagnostic accuracy in chest x-ray analysis significantly. The hybrid model using LBP and HOG features with an ensemble model achieved an exceptional accuracy of 99% for binary class (COVID-19, normal) and 97% for multi-class (COVID-19, normal, pneumonia), respectively. These results demonstrate the efficacy of our hybrid approach in enhancing feature representation and achieving superior classification accuracy. The proposed RadientFusion-XR model with hybrid feature extraction and shallow learning approach significantly increases the accuracy of COVID-19 and pneumonia diagnoses from chest x-rays. The interpretable nature of RadientFusion-XR, alongside its effectiveness and explainability, makes it a valuable tool for clinical applications, fostering trust and enabling informed decision-making by healthcare professionals.</p>\",\"PeriodicalId\":9274,\"journal\":{\"name\":\"Biotechnology and applied biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and applied biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bab.70020\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.70020","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从正常胸片和肺炎胸片中快速准确地检测COVID-19(2019冠状病毒病)对于及时诊断和治疗至关重要。放射学图像中的重叠特征使放射科医生难以区分COVID-19病例。本研究探讨了将局部二值模式(LBP)和定向梯度直方图(HOG)特征与机器学习算法相结合,在胸部x光片上区分COVID-19与正常病例和肺炎病例的有效性。提出的混合融合模型“RadientFusion-XR”利用LBP和HOG特征以及浅学习算法。提出的猪- lbp混合融合模型RadientFusion-XR可以从正常和肺炎类别中检测COVID-19病例。该融合模型提供了一个全面的表示,可以更精确地区分三类。该方法为临床环境中的早期COVID-19和肺炎诊断提供了一种有希望和有效的工具,并有可能集成到自动化诊断系统中。研究结果强调了这种混合特征提取和浅学习方法在提高胸部x线分析诊断准确性方面的潜力。使用LBP和HOG特征与集成模型的混合模型对二元分类(COVID-19,正常)和多分类(COVID-19,正常,肺炎)的准确率分别达到了99%和97%。这些结果证明了我们的混合方法在增强特征表示和实现更高的分类精度方面的有效性。采用混合特征提取和浅学习方法的RadientFusion-XR模型显著提高了胸部x射线对COVID-19和肺炎诊断的准确性。RadientFusion-XR的可解释性,以及其有效性和可解释性,使其成为临床应用的宝贵工具,可促进信任并使医疗保健专业人员能够做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RadientFusion-XR: A Hybrid LBP-HOG Model for COVID-19 Detection Using Machine Learning.

The rapid and accurate detection of COVID-19 (coronavirus disease 2019) from normal and pneumonia chest x-ray images is essential for timely diagnosis and treatment. The overlapping features in radiology images make it challenging for radiologists to distinguish COVID-19 cases. This research study investigates the effectiveness of combining local binary pattern (LBP) and histogram of oriented gradients (HOG) features with machine learning algorithms to differentiate COVID-19 from normal and pneumonia cases using chest x-rays. The proposed hybrid fusion model "RadientFusion-XR" utilizes LBP and HOG features with shallow learning algorithms. The proposed hybrid HOG-LBP fusion model, RadientFusion-XR, detects COVID-19 cases from normal and pneumonia classes. This fusion model provides a comprehensive representation, enabling more precise differentiation among the three classes. This methodology presents a promising and efficient tool for early COVID-19 and pneumonia diagnosis in clinical settings, with potential integration into automated diagnostic systems. The findings highlight the potential of this hybrid feature extraction and a shallow learning approach to improve diagnostic accuracy in chest x-ray analysis significantly. The hybrid model using LBP and HOG features with an ensemble model achieved an exceptional accuracy of 99% for binary class (COVID-19, normal) and 97% for multi-class (COVID-19, normal, pneumonia), respectively. These results demonstrate the efficacy of our hybrid approach in enhancing feature representation and achieving superior classification accuracy. The proposed RadientFusion-XR model with hybrid feature extraction and shallow learning approach significantly increases the accuracy of COVID-19 and pneumonia diagnoses from chest x-rays. The interpretable nature of RadientFusion-XR, alongside its effectiveness and explainability, makes it a valuable tool for clinical applications, fostering trust and enabling informed decision-making by healthcare professionals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and applied biochemistry
Biotechnology and applied biochemistry 工程技术-生化与分子生物学
CiteScore
6.00
自引率
7.10%
发文量
117
审稿时长
3 months
期刊介绍: Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation. The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信