{"title":"Dual Targeting of MEK1 and Akt Kinase Identified SBL-027 as a Promising Lead Candidate to Control Cell Proliferations in Gastric Cancer.","authors":"Maha Alamodi Alghamdi, Hemali Deshpande","doi":"10.1002/bab.2716","DOIUrl":"https://doi.org/10.1002/bab.2716","url":null,"abstract":"<p><p>Dual inhibition of Akt and MEK1 pathways offers a promising strategy to enhance treatment efficacy in gastric cancer. In this study, we employed computational approaches followed by in vitro validations. Our results demonstrate that SBL-027 exhibits robust and enduring interactions with Akt and MEK1 kinases, as evidenced by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) based binding free energy estimates. The predicted Gibbs binding free energies indicate highly favorable interactions between SBL-027 and both Akt and MEK1 kinases. In vitro, SBL-027 displayed an IC<sub>50</sub> value of 195.20 nM against Akt and 239.10 nM against MEK1 enzymes. The compound exhibited potent inhibition of cell proliferation in KATOIII and SNU-5 cells, with GI<sub>50</sub> values of 490.70 and 615.14 nM, respectively. Moreover, SBL-027 induced an increase in the sub G<sub>0</sub>/G<sub>1</sub> population during the cell cycle of KATOIII and SNU-5 cells, while facilitating early and late-phase apoptosis in these cell lines. Notably, the compound significantly reduced the percentage of dual-positive cells expressing both MEK1 and Akt in gastric cancer cells. The strong binding affinity, stability, and favorable thermodynamics of SBL-027 along with the established in vitro efficacy highlight its potential as a lead compound for further preclinical and clinical development.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ahmadullah Zahir, Peter A Okorie, Veronica N Nwobasi, Esther I David, Rita O Nwankwegu, Fidelis Azi
{"title":"Harnessing Microbial Signal Transduction Systems in Natural and Synthetic Consortia for Biotechnological Applications.","authors":"Ahmadullah Zahir, Peter A Okorie, Veronica N Nwobasi, Esther I David, Rita O Nwankwegu, Fidelis Azi","doi":"10.1002/bab.2707","DOIUrl":"https://doi.org/10.1002/bab.2707","url":null,"abstract":"<p><p>Signal transduction is crucial for communication and cellular response in microbial communities. Consortia rely on it for effective communication, responding to changing environmental conditions, establishing community structures, and performing collective behaviors. Microbial signal transduction can be through quorum sensing (QS), two-component signal transduction systems, biofilm formation, nutrient sensing, chemotaxis, horizontal gene transfer stress response, and so forth. The consortium uses small signaling molecules in QS to regulate gene expression and coordinate intercellular communication and behaviors. Biofilm formation allows cells to adhere and aggregate, promoting species interactions and environmental stress resistance. Chemotaxis enables directional movement toward or away from chemical gradients, promoting efficient resource utilization and community organization within the consortium. In recent years, synthetic microbial consortia have gained attention for their potential applications in biotechnology and bioremediation. Understanding signal transduction in natural and synthetic microbial consortia is important for gaining insights into community dynamics, evolution, and ecological function. It can provide strategies for biotechnological innovation for enhancing biosensors, biodegradation, bioenergy efficiency, and waste reduction. This review provides compelling insight that will advance our understanding of microbial signal transduction dynamics and its role in orchestrating microbial interactions, which facilitate coordination, cooperation, gene expression, resource allocation, and trigger specific responses that determine community success.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rashmi Thakor, Harsh Mistry, Hesham S Almoallim, Mohammad Javed Ansari, Ashish Patel, Virendra Kumar Yadav, Dipak Kumar Sahoo, Himanshu Bariya
{"title":"Enhanced Synthesis, Purification, and Characterization of a Marine Bacterial Consortium-Derived Protease Enzyme With Destaining and Keratinolytic Activity.","authors":"Rashmi Thakor, Harsh Mistry, Hesham S Almoallim, Mohammad Javed Ansari, Ashish Patel, Virendra Kumar Yadav, Dipak Kumar Sahoo, Himanshu Bariya","doi":"10.1002/bab.2711","DOIUrl":"https://doi.org/10.1002/bab.2711","url":null,"abstract":"<p><p>Two marine-derived bacteria, Bacillus paralicheniformis (HR-1) and Bacillus haynesii (HR-5), were isolated from sediments and identified using 16S ribosomal RNA gene amplification and sequencing as well as biochemical analysis. The development of a bacterial consortium (HR-1 & HR-5) from these two bacteria was used to increase the production of the protease enzyme under various conditions, including fermentation media, carbon and nitrogen sources (1% w/v), different pH levels, incubation time, and the obtained enzyme, were detected using SDS-PAGE followed by purification. Bacterial consortium HR-1 & HR-5 exhibited maximum protease production (330.42 ± 4.47 U/mL) than the individual isolates HR-1 (156.32 ± 2.14 U/mL) and HR-5 (185.73 ± 5.14 U/mL) on supplementing peptone (1% w/v), 2.8% skim milk + N-broth, pH 9, and dextrose (1% w/v) after 48 h of incubation time. The purified enzyme showed increased activity at alkaline pH 9.0 and also in the presence of ions such as Ca<sup>+2</sup>, Fe<sup>+3</sup>, Mg<sup>+2</sup>, and Mn<sup>+2</sup>. The purified protease obtained from the consortium HR-1 and HR-5 shows improved efficiency for stain removal from cloth as well as high keratinolytic efficiency for poultry feather degradation, making this enzyme suitable for industrial use, particularly in the textile and tannery sectors.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142909330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PRKAA2 Promotes Tumor Growth and Inhibits Ferroptosis through SLC7A11/GSH/GPX4 Pathway in Non-Small Cell Lung Cancer.","authors":"Zhiqiang Wei, Zhilian Zhou, Yu Zhang, Jie Wang, Ke Huang, Yuanyu Ding, Yingming Sun, Mingming Gu, Xiangang Kong, Erping Xi, Shaoshan Zeng","doi":"10.1002/bab.2710","DOIUrl":"https://doi.org/10.1002/bab.2710","url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) is the most pervasive sort of lung cancer with deadly outcome. According to recent studies, a number of neoplastic disorders and ferroptosis are intimately connected. This study aims to identify the role of key ferroptosis-related gene (protein kinase AMP-activated catalytic subunit alpha 2, PRKAA2) and explore new directions for the diagnosis and treatment of NSCLC. The PRKAA2 expression and its influence on survival were analyzed in multiple public databases (TCGA, TIMER2.0, and GEPIA). And PRKAA2 mRNA level in NSCLC cells were examined by qRT-PCR. Silencing of PRKAA2 (sh-PRKAA2) were used to cell transfection. CCK-8, EdU, and flow cytometry assays were used to measure cell proliferation and apoptosis. The protein levels of ferroptosis markers (SLC7A11, GPX4, and NRF2) were determined by western blotting. Meanwhile, the related ferroptosis analysis, such as malondialdehyde (MDA) and glutathione (GSH), reactive oxygen species (ROS), iron, and Fe<sup>2+</sup> levels were also detected in the transfected cells. Moreover, the relationship between PRKAA2 expression and SLC7A11 was analyzed. NSCLC xenograft mouse models were used for in vivo verification of the PRKAA2 function. Here, our data revealed that PRKAA2 was upregulated in NSCLC cells. Additionally, PRKAA2 strengthened cell proliferation and attenuated apoptosis and ferroptosis of NSCLC cells. The depletion of PRKAA2 enhanced the erastin-induced inhibition effect on cell growth, and notably increased the levels of MDA, ROS, iron, and Fe<sup>2+</sup>, while decreased GSH level in NSCLC cells. In the mechanism exploration, we discovered that PRKAA2 could activate the SLC7A11/GSH/GPx4 antioxidant pathway. The rescue experiments showed that SLC7A11 abrogated the inhibitive impacts of PRKAA2 repression on cellular proliferation, cell apoptosis, and ferroptosis in NSCLC. Besides, animal experiments proved that PRKAA2 enhanced NSCLC tumor growth in vivo. The results discovered that PRKAA2 accelerated the malignant progression, diminished apoptosis and ferroptosis in NSCLC through SLC7A11/GSH/GPX4 pathway. This study provide a novel target in the application of PRKAA2 for NSCLC treatment.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142892433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saleh ALNadhari, Waleed A A Alsakkaf, Faisal Abdulaziz Albarakat
{"title":"Biochemical and In Silico Aspects of Active Compounds From Nyctanthes arbor-tristis Flower As Antidiabetic Agent.","authors":"Saleh ALNadhari, Waleed A A Alsakkaf, Faisal Abdulaziz Albarakat","doi":"10.1002/bab.2709","DOIUrl":"https://doi.org/10.1002/bab.2709","url":null,"abstract":"<p><p>Targeting alpha-glucosidase (maltase-glucoamylase [MGAM] and sucrase-isomaltase [SI]) under diabetes conditions is important to overcome hyperglycemia. Moreover, it is necessary to mitigate hyperglycemia-mediated oxidative stress to evade the progression of diabetes-associated secondary complications. Hence, in the present study, under-explored Nyctanthes arbor-tristis flowers (NAFs) were studied for inhibition of alpha-glucosidase activities. The NAF methanolic extract (NAFME) was prepared. Through liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) analysis, various phytocompounds belonging to different classes-flavonoids, iridoid glycosides, proanthocyanidin, anthocyanin, polyphenol, phenolic acid, fatty acid ester, and carotenoid-were identified. NAFME showed in vitro antioxidant activity. NAFME inhibited maltase, sucrase, glucoamylase, and isomaltase in mixed mode with Ki values of 179.93, 176.38, 126.03, and 201.56 µg/mL, respectively. In silico screening of phytocompounds identified in NAFME indicated that hinokiflavone (HKF), pelargonidin-3-O-glucoside (PG), isorhamnetin-3-glucoside-7-rhamnoside (IGR), and petunidin-3-rutinoside (PR) showed better interactions with different subunits of human alpha-glucosidase, namely, N-terminal (Nt-MGAM and Nt-SI) and C-terminal (Ct-MGAM and Ct-SI). Molecular dynamics (MD) simulation, binding free energy study (molecular mechanics-generalized Born surface area [MM/GBSA]), and post-MD simulation studies (principal component analysis [PCA] and dynamic cross-correlation matrix [DCCM]) provided an in-depth understanding of these ligands' interactions with proteins. The overall efficacy of NAFME against oxidative stress and alpha-glucosidase in vitro is understood. Moreover, in silico analysis has shown the possible potential of HKF, PG, IGR, and PR to act as alpha-glucosidase inhibitors. Further studies on the antidiabetic potential of NAFME, HKF, PG, IGR, and PR in in vivo conditions are required to fully unveil the applicability of NAFME in the management of T2DM as a complementary medicine.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaomin Chen, Bin Chen, Yun Hong, Liang Chen, Shusen Zheng
{"title":"SENP1 promotes deacetylation of isocitrate dehydrogenase 2 to inhibit ferroptosis of breast cancer via enhancing SIRT3 stability.","authors":"Yaomin Chen, Bin Chen, Yun Hong, Liang Chen, Shusen Zheng","doi":"10.1002/bab.2699","DOIUrl":"https://doi.org/10.1002/bab.2699","url":null,"abstract":"<p><p>Breast cancer, one of the most prevalent malignant tumors in women worldwide, is characterized by a poor prognosis and high susceptibility to recurrence and metastasis. Ferroptosis, a lipid peroxide-dependent programed cell death pathway, holds significant potential for breast cancer treatment. Therefore, investigating the regulatory targets and associated mechanisms of ferroptosis is crucial. In this study, we conducted proteomic screening and identified isocitrate dehydrogenase 2 (IDH2) as an important player in breast cancer progression. Our findings were further supported by CCK-8 assays, transwell experiments, and scratch assays, which demonstrated that the elevated expression of IDH2 promotes breast cancer progression. Through both in vitro and in vivo experiments along with the erastin treatment, we discovered that increased expression of IDH2 confers resistance to ferroptosis in breast cancer cells. By employing Western blot analysis, Co-IP techniques, and immunofluorescence staining methods, we elucidated the upstream molecular mechanism involving SENP1-mediated SIRT3 de-SUMOylatase, which enhances IDH2 enzyme activity through deacetylation, thereby regulating cell ferroptosis. In conclusion, our study highlights the role of the SENP1-SIRT3 axis in modulating ferroptosis via IDH2 in breast cancer cells, providing valuable insights for developing targeted therapies aimed at enhancing ferroptosis for improved management of breast cancer.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Valorization of papaya fruit peel waste for the production of nanocellulose by Novacetimonas hansenii BMK-3.","authors":"Moniya Katyal, Rakshanda Singh, Ritu Mahajan, Anurekha Sharma, Ranjan Gupta, Neeraj K Aggarwal, Anita Yadav","doi":"10.1002/bab.2706","DOIUrl":"https://doi.org/10.1002/bab.2706","url":null,"abstract":"<p><p>Nanocellulose is the renewable biopolymer produced in nature by different bacteria. The widespread use of nanocellulose in industrial processes increases the demand for this valuable biomaterial. To overcome the high cost of producing nanocellulose using the Hestrin-Schramm medium, alternative agricultural waste has been studied as a potential low-cost supply. This study investigated the optimization and physicochemical characterization of cellulose membrane obtained, utilizing a low-cost substrate--papaya peel-based medium, with Novacetimonas hansenii BMK-3.The maximum yield of nanocellulose was found at an inoculum age 24 h, inoculum size 10% (v/v), incubation time 15 days, pH 3.5, media:flask volume ratio 1:2.5, and temperature 30°C. Cellulose yield produced using the papaya peel-based medium was nearly four times more than using the Hestrin-Schramm medium. The structural and physical properties of cellulose were characterized using field emission scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and derivative of thermogravimetric analysis. Cellulose produced using papaya peel-based medium had similar properties to cellulose produced in the Hestrin-Schramm medium. The results suggested papaya peels as a cost-effective substrate for cellulose production with enhanced yield. This study reports an eco-friendly approach for the management of papaya peels waste disposal and production of value-added product. This is the first report mentioning the valorization of papaya fruit peel waste for the production of cellulose.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bioactivity of fluorophenyl thiourea derivatives: Antioxidant efficacy and inhibition of key diabetes-related enzymes.","authors":"Zeynebe Bingöl","doi":"10.1002/bab.2708","DOIUrl":"https://doi.org/10.1002/bab.2708","url":null,"abstract":"<p><p>Thiourea structures, known for their wide-ranging bioactivity, have significant potential in diabetes management. In this study, it was aimed to examine the antioxidant capacities of fluorophenyl thiourea derivative compounds and their inhibition studies on α-amylase and α-glycosidase enzyme activity. Antioxidant capacity was determined using Fe<sup>3+</sup>-Fe<sup>+2</sup>, FRAP, and Cu<sup>2+</sup>-Cu<sup>+</sup> reducing analyses, DPPH· and ABTS·<sup>+</sup> scavenging experiments. It was observed that fluorophenyl thiourea derivative compounds exhibited quite high antioxidant activity compared to standard antioxidants such as BHA, BHT, trolox, α-tocopherol, and ascorbic acid. Additionally, this study investigated the inhibitory effects of the analysis molecules on α-glycosidase and α-amylase, which are enzymes associated with diabetes. Among these derivative molecules, 4-fluorophenyl showed the highest inhibition on α-amylase (IC<sub>50</sub>: 53.307 nM) and α-glycosidase (IC<sub>50</sub>: 24.928 nM). These results highlight the potential of thiourea derivatives in enzyme inhibition and antioxidant therapy, making them promising candidates for diabetes management.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-assembled free nanocarrier prodrugs based on camptothecin and dihydroartemisinin exhibit accumulation and improved anticancer efficacy.","authors":"Mohan Garg, Roopashree Rangaswamy, Rahul Mishra, Shivangi Giri, Arunachalam Chinnathambi, Tahani Awad Alahmadi, Palanisamy Arulselvan, Indumathi Thangavelu","doi":"10.1002/bab.2698","DOIUrl":"https://doi.org/10.1002/bab.2698","url":null,"abstract":"<p><p>Small molecule targeted inhibitor therapies often have several drawbacks, including limited oral bioavailability, quick metabolism, toxic effects that limit dosage, and poor water solubility. This study aims to develop a nanodrug self-delivery system that does not require a carrier by utilizing the self-assembly of camptothecin (CPT) and dihydroartemisinin (DHA). CPT/DHA nanoparticles (NPs) with varying diameters can be synthesized without requiring further carrier materials or chemical modifications by changing the CPT-to-DHA ratio (10:1, 5:1, 2:1, 1:1). Even more crucially, CPT/DHA NPs generate an AIE impact when they self-assemble. CPT/DHA NPs are used for cell tracking and bioimaging fluorescent probes. We chose CPT/DHA NPs (2:1) with a size of approximately 140 nm for the anticancer examinations. The A549 cells were used to assess the cytotoxicity, morphological changes by biochemical staining methods and apoptosis by flow cytometric techniques of CPT/DHA NPs. Finally, in vitro anticancer research proved that CPT/DHA NPs are biocompatible and have strong synergistic anticancer properties.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nazli Ece Varan, Deniz Yildirim, Ali Toprak, Roberto Fernandéz-Lafuente, Dilek Alagöz
{"title":"Effect of the activation strategy of nickel oxide-multi-walled carbon nanotubes on the immobilization of xylanase for synthesis of xylooligosaccharides.","authors":"Nazli Ece Varan, Deniz Yildirim, Ali Toprak, Roberto Fernandéz-Lafuente, Dilek Alagöz","doi":"10.1002/bab.2705","DOIUrl":"https://doi.org/10.1002/bab.2705","url":null,"abstract":"<p><p>Magnetic nickel oxide multi-walled carbon nanotubes (MWCNT-NiO) were employed in the immobilization of xylanase from Thermomyces lanuginosus, after modification with (3-glycidoxypropyl)trimethoxysilane or 3-aminopropyltriethoxysilane (APTES). The APTES-derivatized MWCNT-NiO particles were activated with glutaraldehyde to immobilize T. lanuginosus xylanase via covalent attachment. The (3-glycidoxypropyl)trimethoxysilane-derivatized MWCNT-NiO particles were directly used for the covalent immobilization of T. lanuginosus xylanase, or the formed epoxy groups were converted to aldehyde groups. The free xylanase had maximum activity at pH 7.5, whereas the immobilized samples showed an optimum pH of 7.0. The optimum temperature was 60°C for the xylanase samples. The thermal stability of xylanase increased at 7 and/or 12 folds after immobilization. The results of xylooligosaccharide synthesis showed that the main formed xylooligosaccharides were xylobiose, xylotriose, and xylotetraose for the immobilized xylanase samples. Furthermore, an effect of the enzyme loading could be found, an increase in this parameter promoted that xylobiose and xylotriose amounts slightly increased, whereas xylotetraose amount slightly decreased. The immobilized xylanase samples retained at least 80% of their initial activity after five reuses at pH 7.0 and 60°C. The results show that the new xylanase preparations were easily separable, thermally stable, and reusable in the synthesis of xylooligosaccharides.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}