{"title":"A stretchable, electroconductive tissue adhesive for the treatment of neural injury","authors":"Jharana Dhal, Mahsa Ghovvati, Avijit Baidya, Ronak Afshari, Curtis L. Cetrulo Jr, Reza Abdi, Nasim Annabi","doi":"10.1002/btm2.10667","DOIUrl":"10.1002/btm2.10667","url":null,"abstract":"<p>Successful nerve repair using bioadhesive hydrogels demands minimizing tissue–material interfacial mechanical mismatch to reduce immune responses and scar tissue formation. Furthermore, it is crucial to maintain the bioelectrical stimulation-mediated cell-signaling mechanism to overcome communication barriers within injured nerve tissues. Therefore, engineering bioadhesives for neural tissue regeneration necessitates the integration of electroconductive properties with tissue-like biomechanics. In this study, we propose a stretchable bioadhesive based on a custom-designed chemically modified elastin-like polypeptides (ELPs) and a choline-based bioionic liquid (Bio-IL), providing an electroconductive microenvironment to reconnect damaged nerve tissue. The stretchability akin to native neural tissue was achieved by incorporating hydrophobic ELP pockets, and a robust tissue adhesion was obtained due to multi-mode tissue–material interactions through covalent and noncovalent bonding at the tissue interface. Adhesion tests revealed adhesive strength ~10 times higher than commercially available tissue adhesive, Evicel®. Furthermore, the engineered hydrogel supported in vitro viability and proliferation of human glial cells. We also evaluated the biodegradability and biocompatibility of the engineered bioadhesive in vivo using a rat subcutaneous implantation model, which demonstrated facile tissue infiltration and minimal immune response. The outlined functionalities empower the engineered elastic and electroconductive adhesive hydrogel to effectively enable sutureless surgical sealing of neural injuries and promote tissue regeneration.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10667","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140821501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hemostats in the clinic","authors":"Maithili Joshi, Zongmin Zhao, Samir Mitragotri","doi":"10.1002/btm2.10673","DOIUrl":"10.1002/btm2.10673","url":null,"abstract":"<p>Given the prevalence of hematological conditions, surgeries, and trauma incidents, hemostats—therapeutics designed to control and arrest bleeding—are an important tool in patient care. The prophylactic and therapeutic use of hemostats markedly enhances survival rates and improves the overall quality of life of patients suffering from these conditions. Since their inception in the 1960s, hemostats have witnessed remarkable progress in terms of the active ingredients utilized, therapeutic outcomes, demonstrated efficacy, and the storage stability. In this review, we provide a comprehensive analysis of commercially available hemostats approved by the FDA, along with newer investigative hemostats currently in active clinical trials. We delve into the modality of active ingredients, route of administration, formulation type, and disease indications of these approved and investigative hemostats. Further, we analyze the trends observed in the hemostat actives for Hemophilia A and B, concluding with insights into the emerging patterns and noteworthy developments to watch for in this dynamic field.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10673","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140819442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew R. Stevens, Mohammed Hadis, Alice Phillips, Abhinav Thareja, Michael Milward, Antonio Belli, William Palin, David J. Davies, Zubair Ahmed
{"title":"Implantable and transcutaneous photobiomodulation promote neuroregeneration and recovery of lost function after spinal cord injury","authors":"Andrew R. Stevens, Mohammed Hadis, Alice Phillips, Abhinav Thareja, Michael Milward, Antonio Belli, William Palin, David J. Davies, Zubair Ahmed","doi":"10.1002/btm2.10674","DOIUrl":"10.1002/btm2.10674","url":null,"abstract":"<p>Spinal cord injury (SCI) is a cause of profound and irreversible damage, with no effective therapy to promote functional recovery. Photobiomodulation (PBM) may provide a viable therapeutic approach using red or near-infrared light to promote recovery after SCI by mitigating neuroinflammation and preventing neuronal apoptosis. Our current study aimed to optimize PBM dose regimens and develop and validate the efficacy of an invasive PBM delivery paradigm for SCI. Dose optimization studies were performed using a serum withdrawal model of injury in cultures of primary adult rat dorsal root ganglion neurons (DRGN). Implantable and transcutaneous PBM delivery protocols were developed and validated using cadaveric modeling. The efficacy of PBM in promoting recovery after SCI in vivo was studied in a dorsal column crush injury model of SCI in adult rats. Optimal neuroprotection in vitro was achieved between 4 and 22 mW/cm<sup>2</sup>. 11 mW/cm<sup>2</sup> for 1 min per day (0.66 J/cm<sup>2</sup>) increased cell viability by 45% over 5 days (<i>p</i> <0.0001), increasing neurite outgrowth by 25% (<i>p</i> <0.01). A method for invasive application of PBM was developed using a diffusion-tipped optogenetics fiber optic. Delivery methods for PBM were developed and validated for both invasive (iPBM) and noninvasive (transcutaneous) (tcPBM) application. iPBM and tcPBM (24 mW/cm<sup>2</sup> at spinal cord, 1 min per day (1.44 J/cm<sup>2</sup>) up to 7 days) increased activation of regeneration-associated protein at 3 days after SCI, increasing GAP43<sup>+</sup> axons in DRGN from 18.0% (control) to 41.4% ± 10.5 (iPBM) and 45.8% ± 3.4 (tcPBM) (<i>p</i> <0.05). This corresponded to significant improvements at 6 weeks post-injury in functional locomotor and sensory function recovery (<i>p</i> <0.01), axonal regeneration (<i>p</i> <0.01), and reduced lesion size (<i>p</i> <0.01). Our results demonstrated that PBM achieved a significant therapeutic benefit after SCI, either using iPBM or tcPBM application and can potentially be developed for clinical use in SCI patients.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 6","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10674","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Thomas G. Biel, Talia Faison, Alicia M. Matthews, Uriel Ortega-Rodriguez, Vincent M. Falkowski, Edward Meek, Xin Bush, Matthew Flores, Sarah Johnson, Wells W. Wu, Mari Lehtimaki, Rong-Fong Shen, Cyrus Agarabi, V. Ashutosh Rao, Janice E. Chambers, Tongzhong Ju
{"title":"Model acetylcholinesterase-Fc fusion glycoprotein biotechnology system for the manufacture of an organophosphorus toxicant bioscavenging countermeasure","authors":"Thomas G. Biel, Talia Faison, Alicia M. Matthews, Uriel Ortega-Rodriguez, Vincent M. Falkowski, Edward Meek, Xin Bush, Matthew Flores, Sarah Johnson, Wells W. Wu, Mari Lehtimaki, Rong-Fong Shen, Cyrus Agarabi, V. Ashutosh Rao, Janice E. Chambers, Tongzhong Ju","doi":"10.1002/btm2.10666","DOIUrl":"10.1002/btm2.10666","url":null,"abstract":"<p>Organophosphate (OP) toxicants remain an active threat to public health and to warfighters in the military. Current countermeasures require near immediate administration following OP exposure and are reported to have controversial efficacies. Acetylcholinesterase (AChE) fused to the human immunoglobulin 1 (IgG1) Fc domain (AChE-Fc) is a potential bioscavenger for OP toxicants, but a reproducible AChE-Fc biomanufacturing strategy remains elusive. This report is the first to establish a comprehensive laboratory-scale bioprocessing strategy that can reproducibly produce AChE-Fc and AChE(W86A)-Fc which is a mutated AChE protein with reduced enzymatic activity. Characterization studies revealed that AChE-Fc and AChE(W86A)-Fc are <i>N</i>-glycosylated dimeric fusion glycoproteins but only AChE-Fc had the capability to bind to paraoxon (a model OP). This AChE-Fc fusion glycoprotein bioprocessing strategy can be leveraged during industrial biomanufacturing development, while the research-grade AChE-Fc proteins can be used to determine the potential clinical relevance of the countermeasure against OP toxicants.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10666","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140651637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wu, Jiale Wang, Wenhui Fan, Qi Zhong, Rongyue Xue, Siyu Li, Zongming Song, Ye Tao
{"title":"Eye of the future: Unlocking the potential utilization of hydrogels in intraocular lenses","authors":"Hao Wu, Jiale Wang, Wenhui Fan, Qi Zhong, Rongyue Xue, Siyu Li, Zongming Song, Ye Tao","doi":"10.1002/btm2.10664","DOIUrl":"10.1002/btm2.10664","url":null,"abstract":"<p>Hydrogels are distinguished by their exceptional ability to absorb and retain large volumes of water within their complex three-dimensional polymer networks, which is advantageous for the development of intraocular lenses (IOLs). Their innate hydrophilicity offers an optimal substrate for the fabrication of IOLs that simulate the natural lens' accommodation, thereby reducing irritation and facilitating healing after surgery. The swelling and water retention characteristics of hydrogels contribute to their notable biocompatibility and versatile mechanical properties. However, the clinical application of hydrogels faces challenges, including managing potential adverse postimplantation effects. Rigorous research is essential to ascertain the safety and effectiveness of hydrogels. This review systematically examines the prospects and constraints of hydrogels as innovative materials for IOLs. Our comprehensive analysis examines their inherent properties, various classification strategies, cross-linking processes, and sensitivity to external stimuli. Additionally, we thoroughly evaluate their interactions with ocular tissues, underscoring the potential for hydrogels to be refined into seamless and biologically integrated visual aids. We also discuss the anticipated technological progress and clinical uses of hydrogels in IOL manufacturing. With ongoing technological advancements, the promise of hydrogels is poised to evolve from concept to clinical reality, marking a significant leap forward in ophthalmology characterized by improved patient comfort, enhanced functionality, and reliable safety.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tissue-engineered tracheal implants: Advancements, challenges, and clinical considerations","authors":"Shixiong Wei, Yiyuan Zhang, Feixiang Luo, Kexing Duan, Mingqian Li, Guoyue Lv","doi":"10.1002/btm2.10671","DOIUrl":"10.1002/btm2.10671","url":null,"abstract":"<p>Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10–12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10671","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140633935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-pronged reversal of chemotherapy resistance by gold nanorods induced mild photothermal effect","authors":"Qi Shang, Ziyan Chen, Jing Li, Mingmei Guo, Jiapei Yang, Zhu Jin, Yuanyuan Shen, Shengrong Guo, Feihu Wang","doi":"10.1002/btm2.10670","DOIUrl":"10.1002/btm2.10670","url":null,"abstract":"<p>Chemotherapy treatment outcomes are severely restricted by multidrug resistance (MDR), in which tumors develop a multiple cross-resistance toward drug involving the pump and nonpump resistance mechanisms, resulting in drug efflux and defending against drug toxicity. Herein, we constructed a pH and near infrared (NIR) light responsive nanomedicine DOX@FG based on gold nanorods (GNRs) that demonstrated the potential to improve chemotherapy outcomes by overcoming MDR. DOX@FG was constructed by conjugating folic acid (FA) and doxorubicin (DOX) derivatives onto GNRs, where the DOX derivatives possessed an acid-labile hydrazone bond. Stimulated by the acidic media in endocytic organelles, DOX@FG exhibited a responsive dissociation for the controlled release of chemotherapeutic DOX. Surprisingly, we found the mild photothermal effect elicited by GNRs under NIR irradiation simultaneously inhibited the pump and nonpump resistance mechanisms, enhancing the intracellular DOX accumulation and sensitizing the cancer cells to DOX, collectively amplify the chemotherapy efficacy and delay the MCF-7/ADR breast tumor growth. This intelligent DOX@FG nanomedicine with the potential for two-pronged reversal of MDR may provide a prospective way to encourage chemotherapy efficacy.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10670","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140620512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanomaterial-assisted oncolytic bacteria in solid tumor diagnosis and therapeutics","authors":"Xiangdi Zeng, Qi Chen, Tingtao Chen","doi":"10.1002/btm2.10672","DOIUrl":"10.1002/btm2.10672","url":null,"abstract":"<p>Cancer presents a formidable challenge in modern medicine due to the intratumoral heterogeneity and the dynamic microenvironmental niche. Natural or genetically engineered oncolytic bacteria have always been hailed by scientists for their intrinsic tumor-targeting and oncolytic capacities. However, the immunogenicity and low toxicity inevitably constrain their application in clinical practice. When nanomaterials, characterized by distinctive physicochemical properties, are integrated with oncolytic bacteria, they achieve mutually complementary advantages and construct efficient and safe nanobiohybrids. In this review, we initially analyze the merits and drawbacks of conventional tumor therapeutic approaches, followed by a detailed examination of the precise oncolysis mechanisms employed by oncolytic bacteria. Subsequently, we focus on harnessing nanomaterial-assisted oncolytic bacteria (NAOB) to augment the effectiveness of tumor therapy and utilizing them as nanotheranostic agents for imaging-guided tumor treatment. Finally, by summarizing and analyzing the current deficiencies of NAOB, this review provides some innovative directions for developing nanobiohybrids, intending to infuse novel research concepts into the realm of solid tumor therapy.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 4","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140607547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abigail G. Harrell, Stephen R. Thom, C. Wyatt Shields IV
{"title":"Dissolved gases from pressure changes in the lungs elicit an immune response in human peripheral blood","authors":"Abigail G. Harrell, Stephen R. Thom, C. Wyatt Shields IV","doi":"10.1002/btm2.10657","DOIUrl":"10.1002/btm2.10657","url":null,"abstract":"<p>Conventional dogma suggests that decompression sickness (DCS) is caused by nitrogen bubble nucleation in the blood vessels and/or tissues; however, the abundance of bubbles does not correlate with DCS severity. Since immune cells respond to chemical and environmental cues, we hypothesized that the elevated partial pressures of dissolved gases drive aberrant immune cell phenotypes in the alveolar vasculature. To test this hypothesis, we measured immune responses within human lung-on-a-chip devices established with primary alveolar cells and microvascular cells. Devices were pressurized to 1.0 or 3.5 atm and surrounded by normal alveolar air or oxygen-reduced air. Phenotyping of neutrophils, monocytes, and dendritic cells as well as multiplexed ELISA revealed that immune responses occur within 1 h and that normal alveolar air (i.e., hyperbaric oxygen and nitrogen) confer greater immune activation. This work strongly suggests innate immune cell reactions initiated at elevated partial pressures contribute to the etiology of DCS.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10657","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric S. Nealy, Steven J. Reed, Steven M. Adelmund, Barry A. Badeau, Jared A. Shadish, Emily J. Girard, Kenneth Brasel, Fiona J. Pakiam, Andrew J. Mhyre, Jason P. Price, Surojit Sarkar, Vandana Kalia, Cole A. DeForest, James M. Olson
{"title":"Versatile tissue-injectable hydrogels capable of the extended hydrolytic release of bioactive protein therapeutics","authors":"Eric S. Nealy, Steven J. Reed, Steven M. Adelmund, Barry A. Badeau, Jared A. Shadish, Emily J. Girard, Kenneth Brasel, Fiona J. Pakiam, Andrew J. Mhyre, Jason P. Price, Surojit Sarkar, Vandana Kalia, Cole A. DeForest, James M. Olson","doi":"10.1002/btm2.10668","DOIUrl":"10.1002/btm2.10668","url":null,"abstract":"<p>Hydrogels are extensively employed in healthcare due to their adaptable structures, high water content, and biocompatibility, with FDA-approved applications ranging from spinal cord regeneration to local therapeutic delivery. However, clinical hydrogels encounter challenges related to inconsistent therapeutic exposure, unmodifiable release windows, and difficulties in subsurface polymer insertion. Addressing these issues, we engineered injectable, biocompatible hydrogels as a local therapeutic depot, utilizing poly(ethylene glycol) (PEG)-based hydrogels functionalized with bioorthogonal SPAAC handles for network polymerization and functionalization. Our hydrogel solutions polymerize in situ in a temperature-sensitive manner, persist in tissue, and facilitate the delivery of bioactive therapeutics in subsurface locations. Demonstrating the efficacy of our approach, recombinant anti-CD47 monoclonal antibodies, when incorporated into subsurface-injected hydrogel solutions, exhibited cytotoxic activity against infiltrative high-grade glioma xenografts in the rodent brain. To enhance the gel's versatility, recombinant protein cargos can undergo site-specific modification with hydrolysable “azidoester” adapters, allowing for user-defined release profiles from the hydrogel. Hydrogel-generated gradients of murine CXCL10, linked to intratumorally injected hydrogel solutions via azidoester linkers, resulted in significant recruitment of CD8<sup>+</sup> T-cells and the attenuation of tumor growth in a “cold” syngeneic melanoma model. This study highlights a highly customizable, hydrogel-based delivery system for local protein therapeutic administration to meet diverse clinical needs.</p>","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"9 5","pages":""},"PeriodicalIF":6.1,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/btm2.10668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140556639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}