Convective forces contribute to post‐traumatic degeneration after spinal cord injury

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hoi Y. Kwon, Christopher Streilein, R. Chase Cornelison
{"title":"Convective forces contribute to post‐traumatic degeneration after spinal cord injury","authors":"Hoi Y. Kwon, Christopher Streilein, R. Chase Cornelison","doi":"10.1002/btm2.10739","DOIUrl":null,"url":null,"abstract":"Spinal cord injury (SCI) initiates a complex cascade of chemical and biophysical phenomena that result in tissue swelling, progressive neural degeneration, and formation of a fluid‐filled cavity. Previous studies show fluid pressure above the spinal cord (supraspinal) is elevated for at least 3 days after injury and contributes to a phase of damage called secondary injury. Currently, it is unknown how fluid forces within the spinal cord itself (interstitial) are affected by SCI and if they contribute to secondary injury. We find spinal interstitial pressure increases from −3 mmHg in the naive cord to a peak of 13 mmHg at 3 days post‐injury (DPI) but relatively normalizes to 2 mmHg by 7 DPI. A computational fluid dynamics model predicts interstitial flow velocities up to 0.9 μm/s at 3 DPI, returning to near baseline by 7 DPI. By quantifying vascular leakage of Evans Blue dye after a cervical hemi‐contusion in rats, we confirm an increase in dye infiltration at 3 DPI compared to 7 DPI, suggestive of higher fluid velocities at the time of peak fluid pressure. In vivo expression of the apoptosis marker caspase‐3 is strongly correlated with regions of interstitial flow at 3 DPI, and exogenously enhancing interstitial flow exacerbates tissue damage. In vitro, we show overnight exposure of neuronal cells to low pathological shear stress (0.1 dynes/cm<jats:sup>2</jats:sup>) significantly reduces cell count and neurite length. Collectively, these results indicate that interstitial fluid flow and shear stress may play a detrimental role in post‐traumatic neural degeneration.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":"52 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10739","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) initiates a complex cascade of chemical and biophysical phenomena that result in tissue swelling, progressive neural degeneration, and formation of a fluid‐filled cavity. Previous studies show fluid pressure above the spinal cord (supraspinal) is elevated for at least 3 days after injury and contributes to a phase of damage called secondary injury. Currently, it is unknown how fluid forces within the spinal cord itself (interstitial) are affected by SCI and if they contribute to secondary injury. We find spinal interstitial pressure increases from −3 mmHg in the naive cord to a peak of 13 mmHg at 3 days post‐injury (DPI) but relatively normalizes to 2 mmHg by 7 DPI. A computational fluid dynamics model predicts interstitial flow velocities up to 0.9 μm/s at 3 DPI, returning to near baseline by 7 DPI. By quantifying vascular leakage of Evans Blue dye after a cervical hemi‐contusion in rats, we confirm an increase in dye infiltration at 3 DPI compared to 7 DPI, suggestive of higher fluid velocities at the time of peak fluid pressure. In vivo expression of the apoptosis marker caspase‐3 is strongly correlated with regions of interstitial flow at 3 DPI, and exogenously enhancing interstitial flow exacerbates tissue damage. In vitro, we show overnight exposure of neuronal cells to low pathological shear stress (0.1 dynes/cm2) significantly reduces cell count and neurite length. Collectively, these results indicate that interstitial fluid flow and shear stress may play a detrimental role in post‐traumatic neural degeneration.
对流力有助于脊髓损伤后的创伤后变性
脊髓损伤(SCI)引发了一系列复杂的化学和生物物理现象,导致组织肿胀、进行性神经变性和充满液体的空洞的形成。先前的研究表明,脊髓(棘上)上方的流体压力在损伤后至少3天升高,并导致称为继发性损伤的损伤阶段。目前尚不清楚脊髓本身(间质)内的流体力如何受到脊髓损伤的影响,以及它们是否会导致继发性损伤。我们发现脊髓间质压力从初始脊髓的- 3 mmHg增加到损伤后3天(DPI)的峰值13 mmHg,但到7 DPI时相对正常化至2 mmHg。计算流体动力学模型预测,在3 DPI时,间隙流速可达0.9 μm/s,在7 DPI时恢复到接近基线。通过量化大鼠颈部半挫伤后Evans蓝染料的血管渗漏,我们证实与7 DPI相比,3 DPI时染料浸润增加,这表明在流体压力峰值时流体速度更高。在体内,凋亡标志物caspase‐3的表达与DPI时间质血流的区域密切相关,外源性增强间质血流会加剧组织损伤。在体外,我们发现神经元细胞暴露在低病理性剪切应力(0.1 dynes/cm2)下过夜,可显著减少细胞计数和神经突长度。总之,这些结果表明,间质液流动和剪切应力可能在创伤后神经变性中起不利作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信