Brain Tumor PathologyPub Date : 2023-10-01Epub Date: 2023-08-10DOI: 10.1007/s10014-023-00468-3
Katja Bender, Johannes Kahn, Eilís Perez, Felix Ehret, Siyer Roohani, David Capper, Simone Schmid, David Kaul
{"title":"Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype: case series of a new entity.","authors":"Katja Bender, Johannes Kahn, Eilís Perez, Felix Ehret, Siyer Roohani, David Capper, Simone Schmid, David Kaul","doi":"10.1007/s10014-023-00468-3","DOIUrl":"10.1007/s10014-023-00468-3","url":null,"abstract":"<p><p>Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype (pHGG) is a rare and aggressive brain tumor characterized by a specific DNA methylation profile. It was recently introduced in the 5th World Health Organization classification of central nervous system tumors of 2021. Clinical data on this tumor is scarce. This is a case series, which presents the first clinical experience with this entity. We compiled a retrospective case series on pHGG patients treated between 2015 and 2022 at our institution. Data collected include patients' clinical course, surgical procedure, histopathology, genome-wide DNA methylation analysis, imaging and adjuvant therapy. Eight pHGG were identified, ranging in age from 8 to 71 years. On MRI tumors presented with an unspecific intensity profile, T1w hypo- to isointense and T2w hyperintense, with inhomogeneous contrast enhancement, often with rim enhancement. Three patients died of the disease, with overall survival of 19, 28 and 30 months. Four patients were alive at the time of the last follow-up, 4, 5, 6 and 79 months after the initial surgery. One patient was lost to follow-up. Findings indicate that pHGG prevalence might be underestimated in the elderly population.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"204-214"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9969830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraventricular central neurocytoma molecularly defined as extraventricular neurocytoma: a case representing the discrepancy between clinicopathological and molecular classifications.","authors":"Daisuke Sato, Hirokazu Takami, Shunsaku Takayanagi, Masako Ikemura, Reiko Matsuura, Shota Tanaka, Nobuhito Saito","doi":"10.1007/s10014-023-00469-2","DOIUrl":"10.1007/s10014-023-00469-2","url":null,"abstract":"<p><p>Central neurocytoma (CN) is classically defined by its intraventricular location, neuronal/neurocytic differentiation, and histological resemblance to oligodendroglioma. Extraventricular neurocytoma (EVN) shares similar histological features with CN, while it distributes any site without contact with the ventricular system. CN and EVN have distinct methylation landscapes, and EVN has a signature fusion gene, FGFR1-TACC1. These characteristics distinguish between CN and EVN. A 30-year-old female underwent craniotomy and resection of a left intraventricular tumor at our institution. The histopathology demonstrated the classical findings of CN. Adjuvant irradiation with 60 Gy followed. No recurrence has been recorded for 25 years postoperatively. RNA sequencing revealed FGFR1-TACC1 fusion and methylation profile was discrepant with CN but compatible with EVN. We experienced a case of anatomically and histologically proven CN in the lateral ventricle. However, the FGFR1-TACC1 fusion gene and methylation profiling suggested the molecular diagnosis of EVN. The representative case was an \"intraventricular\" neurocytoma displaying molecular features of an \"extraventricular\" neurocytoma. Clinicopathological and molecular definitions have collided in our case and raised questions about the current definition of CN and EVN.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":" ","pages":"230-234"},"PeriodicalIF":3.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575805/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10206488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain Tumor PathologyPub Date : 2023-07-01Epub Date: 2023-05-22DOI: 10.1007/s10014-023-00463-8
Satoshi Nakasu, Shoichi Deguchi, Yoko Nakasu
{"title":"IDH wild-type lower-grade gliomas with glioblastoma molecular features: a systematic review and meta-analysis.","authors":"Satoshi Nakasu, Shoichi Deguchi, Yoko Nakasu","doi":"10.1007/s10014-023-00463-8","DOIUrl":"10.1007/s10014-023-00463-8","url":null,"abstract":"<p><p>The WHO 2021 classification defines IDH wild type (IDHw) histologically lower-grade glioma (hLGG) as molecular glioblastoma (mGBM) if TERT promoter mutation (pTERTm), EGFR amplification or chromosome seven gain and ten loss aberrations are indicated. We systematically reviewed articles of IDHw hLGGs studies (49 studies, N = 3748) and meta-analyzed mGBM prevalence and overall survival (OS) according to the PRISMA statement. mGBM rates in IDHw hLGG were significantly lower in Asian regions (43.7%, 95% confidence interval [CI: 35.8-52.0]) when compared to non-Asian regions (65.0%, [CI: 52.9-75.4]) (P = 0.005) and were significantly lower in fresh-frozen specimen when compared to formalin-fixed paraffin-embedded samples (P = 0.015). IDHw hLGGs without pTERTm rarely expressed other molecular markers in Asian studies when compared to non-Asian studies. Patients with mGBM had significantly longer OS times when compared to histological GBM (hGBM) (pooled hazard ratio (pHR) 0.824, [CI: 0.694-0.98], P = 0.03)). In patients with mGBM, histological grade was a significant prognostic factor (pHR 1.633, [CI: 1.09-2.447], P = 0.018), as was age (P = 0.001) and surgical extent (P = 0.018). Although bias risk across studies was moderate, mGBM with grade II histology showed better OS rates when compared to hGBM.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"143-157"},"PeriodicalIF":2.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lynch syndrome-associated chordoma with high tumor mutational burden and significant response to immune checkpoint inhibitors.","authors":"Naoki Shinojima, Kazutaka Ozono, Haruaki Yamamoto, Sakiko Abe, Rumi Sasaki, Yusuke Tomita, Azusa Kai, Ryosuke Mori, Takahiro Yamamoto, Ken Uekawa, Hirotaka Matsui, Kisato Nosaka, Hiroaki Matsuzaki, Yoshihiro Komohara, Yoshiki Mikami, Akitake Mukasa","doi":"10.1007/s10014-023-00461-w","DOIUrl":"https://doi.org/10.1007/s10014-023-00461-w","url":null,"abstract":"<p><p>Chordoma is a rare malignant bone tumor arising from notochordal tissue. Conventional treatments, such as radical resection and high-dose irradiation, frequently fail to control the tumor, resulting in recurrence and re-growth. In this study, genetic analysis of the tumor in a 72-year-old male patient with refractory conventional chordoma of the skull base revealed a high tumor mutational burden (TMB) and mutations in the MSH6 and MLH1 genes, which are found in Lynch syndrome. The patient and his family had a dense cancer history, and subsequent germline genetic testing revealed Lynch syndrome. This is the first report of a chordoma that has been genetically proven to be Lynch syndrome. Chordomas usually have low TMB; however, this is an unusual case, because the TMB was high, and immune checkpoint inhibitors effectively controlled the tumor. This case provides a basis for determining the indications for immunotherapy of chordoma based on the genetic analysis. Therefore, further extensive genetic analysis in the future will help to stratify the treatment of chordoma.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"185-190"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9744997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"α-SMA positive vascular mural cells suppress cyst formation in hemangioblastoma.","authors":"Maki Sakaguchi, Riho Nakajima, Toshiya Ichinose, Shingo Tanaka, Ryouken Kimura, Hemragul Sabit, Satoko Nakada, Mitsutoshi Nakada","doi":"10.1007/s10014-023-00465-6","DOIUrl":"https://doi.org/10.1007/s10014-023-00465-6","url":null,"abstract":"<p><p>Approximately 60% of hemangioblastomas (HBs) have peritumoral cysts adjacent to the tumor, which can cause neurological deficits due to the mass effect, and the management of cyst formation is a clinical challenge. Vascular mural cells surrounding endothelial cells consist of vascular smooth muscle cells (vSMCs) and pericytes, which are essential elements that support blood vessels and regulate permeability. This study investigated the involvement of mural cells in cyst formation. We analyzed the expression of α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFRB), and CD31 in 39 consecutive human cerebellar HBs, 20 of cystic and 19 of solid type. Solid type HBs showed stronger diffuse expression of α-SMA in precapillary arterioles and capillaries within the tumor than cystic type HBs (p = 0.001), whereas there was no difference in PDGFRB and CD31 expression. Detailed observation with immunofluorescence demonstrated that α-SMA was expressed in vascular mural cells surrounding capillaries in the solid rather than in the cystic type. Multivariate analysis including various clinical and pathological factors showed that lower α-SMA expression was significantly correlated with cyst formation (p < 0.001). Our data suggested that vascular mural cells from precapillary arterioles to capillaries expressing α-SMA may be pericytes and play a crucial role in HB cystogenesis.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"176-184"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10111401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A clinicopathological analysis of supratentorial ependymoma, ZFTA fusion-positive: utility of immunohistochemical detection of CDKN2A alterations and characteristics of the immune microenvironment.","authors":"Naohito Hashimoto, Tomonari Suzuki, Keisuke Ishizawa, Sumihito Nobusawa, Hideaki Yokoo, Ryo Nishikawa, Masanori Yasuda, Atsushi Sasaki","doi":"10.1007/s10014-023-00464-7","DOIUrl":"https://doi.org/10.1007/s10014-023-00464-7","url":null,"abstract":"<p><p>EPN-ZFTA is a rare brain tumor where prognostic factors remain unclear and no effective immunotherapy or chemotherapy is currently available. Therefore, this study investigated its clinicopathological features, evaluated the utility of MTAP and p16 IHC as surrogate markers of CDKN2A alterations, and characterized the immune microenvironment of EPN-ZFTA. Thirty surgically removed brain tumors, including 10 EPN-ZFTA, were subjected to IHC. MLPA was performed for CDKN2A HD in 20 ependymal tumors, including EPN-ZFTA. The 5-years OS and PFS of EPN-ZFTA were 90% and 60%, respectively. CDKN2A HD was detected in two cases of EPN-ZFTA; these cases were immunohistochemically negative for both MTAP and p16 and recurred earlier after surgery. As for the immune microenvironment of EPN-ZFTA, B7-H3, but not PD-L1, was positive in all cases of EPN-ZFTA; Iba-1-positive or CD204-positive macrophages were large, while infiltrating lymphocytes were small, in number in EPN-ZFTA. Collectively, these results indicate the potential of MTAP and p16 IHC as useful surrogate markers of CDKN2A HD in EPN-ZFTA, and tumor-associated macrophages, including the M2 type, may contribute to its immune microenvironment. Furthermore, the expression of B7-H3 in EPN-ZFTA may indicate the usefulness of B7-H3 as a target of immune checkpoint chemotherapy for EPN-ZFTA via B7-H3 pathway.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"163-175"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9743582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Immunohistochemical and ultrastructural review of six cases previously diagnosed as null cell PitNETs.","authors":"Naoko Inoshita, Toyoki Yoshimoto, Yutaka Takazawa, Noriaki Fukuhara, Mitsuo Okada, Hiroshi Nishioka, Shozo Yamada","doi":"10.1007/s10014-023-00462-9","DOIUrl":"https://doi.org/10.1007/s10014-023-00462-9","url":null,"abstract":"<p><p>Pituitary neuroendocrine tumors (PitNETs) lacking lineage affiliation are termed \"null cell\" PitNETs (NCTs). NCTs are characterized as being immunonegative for pituitary hormones as well as transcription factors. We analyzed the ultrastructure and immunohistochemistry of six hormone-negative and transcription factor (TPIT, PIT1, SF1)-negative PitNETs, with less than 1% immunoreactive cells. Histologically, three cases presented a perivascular pattern and pseudorosettes; the other three showed a solid pattern with oncocytic changes. Electron microscopic examination revealed poorly differentiated tumor cells with sparsely scattered secretory granules and intracellular organelles in all null cell tumors when compared with hormone-positive PitNETs. Two cases harbored a honeycomb Golgi (HG) structure, and three oncocytic tumors showed mitochondrial accumulation. The two HG cases were immunopositive for newly obtained TPIT (CL6251) and showed some adrenocorticotropic hormone-positive cells, while the remaining four were diffusely immunopositive for GATA3, with two SF1-positive cases identified in subsequent immunostaining. Thus, these six cases may be classified as two sparsely granulated corticotroph PitNETs, two gonadotroph PitNETs with SF1 re-staining, and two likely gonadotroph PitNETs with GATA3 immunostaining. No \"true NCT\" was detected among 1071 PitNETs, demonstrating the importance of precise diagnosis following the most recent criteria to improve therapeutic success.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 3","pages":"158-162"},"PeriodicalIF":3.3,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9731280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liquid biomarkers in glioma.","authors":"Sho Tamai, Toshiya Ichinose, Mitsutoshi Nakada","doi":"10.1007/s10014-023-00452-x","DOIUrl":"https://doi.org/10.1007/s10014-023-00452-x","url":null,"abstract":"<p><p>An ideal biomarker must meet several parameters to enable its successful adoption; however, the nature of glioma makes it challenging to discover valuable biomarkers. While biomarkers require simplicity for clinical implementation, anatomical features and the complexity of the brain make it challenging to perform histological examination. Therefore, compared to biomarkers from general histological examination, liquid biomarkers for brain disease offer many more advantages in these minimally invasive methods. Ideal biomarkers should have high sensitivity and specificity, especially in malignant tumors. The heterogeneous nature of glioma makes it challenging to determine useful common biomarkers, and no liquid biomarker has yet been adopted clinically. The low incidence of brain tumors also hinders research progress. To overcome these problems, clinical applications of new types of specimens, such as extracellular vesicles and comprehensive omics analysis, have been developed, and some candidate liquid biomarkers have been identified. As against previous reviews, we focused on and reviewed the sensitivity and specificity of each liquid biomarker for its clinical application. Perusing an ideal glioma biomarker would help uncover the common underlying mechanism of glioma and develop new therapeutic targets. Further multicenter studies based on these findings will help establish new treatment strategies in the future.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 2","pages":"66-77"},"PeriodicalIF":3.3,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9694627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utility of genome-wide DNA methylation profiling for pediatric-type diffuse gliomas.","authors":"Yoshihiro Otani, Kaishi Satomi, Yasuki Suruga, Joji Ishida, Kentaro Fujii, Koichi Ichimura, Isao Date","doi":"10.1007/s10014-023-00457-6","DOIUrl":"https://doi.org/10.1007/s10014-023-00457-6","url":null,"abstract":"<p><p>Despite the current progress of treatment, pediatric-type diffuse glioma is one of the most lethal primary malignant tumors in the central nervous system (CNS). Since pediatric-type CNS tumors are rare disease entities and highly heterogeneous, the diagnosis is challenging. An accurate diagnosis is essential for the choice of optimal treatment, which leads to precision oncology and improvement of the patient's outcome. Genome-wide DNA methylation profiling recently emerged as one of the most important tools for the diagnosis of CNS tumors, and the utility of this novel assay has been reported in both pediatric and adult patients. In the current World Health Organization classification published in 2021, several new entities are recognized in pediatric-type diffuse gliomas, some of which require methylation profiling. In this review, we investigated the utility of genome-wide DNA methylation profiling in pediatric-type diffuse glioma, as well as issues in the clinical application of this assay. Furthermore, the combination of genome-wide DNA methylation profiling and other comprehensive genomic assays, which may improve diagnostic accuracy and detection of the actionable target, will be discussed.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 2","pages":"56-65"},"PeriodicalIF":3.3,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9696147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An enduring debate on gliomatosis cerebri.","authors":"Jiro Akimoto","doi":"10.1007/s10014-023-00454-9","DOIUrl":"https://doi.org/10.1007/s10014-023-00454-9","url":null,"abstract":"<p><p>Gliomatosis cerebri (GC) is a unique glial tumor that extensively invades the cerebral white matter and has been recognized as an entity of neuroepithelial tumors since the first edition of the WHO classification of brain tumors in 1979. Thereafter, in the fourth edition of the WHO classification in 2007, it was clearly defined as a specific type of astrocytic tumor. However, in the WHO 2016 classification, which was based on the concept of integrated diagnosis using molecular genetics, GC was deleted as it was considered to be only one growth pattern of diffuse glioma and not a specific pathological entity. Since then, there has been criticism by many neuro-oncologists and the establishment of the GC working group at the NIH, and many activities in the world arguing that GC should not be deleted from the clinical discussion of brain tumors. In Japan, positive activities toward multicenter research on GC pathology should be performed, and molecular pathological evidence that can contribute to the WHO classification in the future should be developed. In this article, the author outlined the pathological characteristics of GC, which has been repeated changing since its conception, and also describes his opinion on GC as a neuro-oncologist.</p>","PeriodicalId":9226,"journal":{"name":"Brain Tumor Pathology","volume":"40 2","pages":"78-84"},"PeriodicalIF":3.3,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9326389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}