Biological Research最新文献

筛选
英文 中文
Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12. Dlk1和Grb10基因中三甲基组蛋白3赖氨酸4的富集会影响妊娠结局,这是由于过量叶酸和过低维生素B12的饮食操作造成的。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-14 DOI: 10.1186/s40659-024-00557-3
Divika Sapehia, Aatish Mahajan, Parampal Singh, Jyotdeep Kaur
{"title":"Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12.","authors":"Divika Sapehia, Aatish Mahajan, Parampal Singh, Jyotdeep Kaur","doi":"10.1186/s40659-024-00557-3","DOIUrl":"10.1186/s40659-024-00557-3","url":null,"abstract":"<p><p>The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"85"},"PeriodicalIF":4.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562088/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile. 鲑鱼养殖对智利巴塔哥尼亚北部表层海水中海洋细菌群落的抗生素耐药性和结构的影响。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-10 DOI: 10.1186/s40659-024-00556-4
Javiera Ortiz-Severín, Christian Hodar, Camila Stuardo, Constanza Aguado-Norese, Felipe Maza, Mauricio González, Verónica Cambiazo
{"title":"Impact of salmon farming in the antibiotic resistance and structure of marine bacterial communities from surface seawater of a northern Patagonian area of Chile.","authors":"Javiera Ortiz-Severín, Christian Hodar, Camila Stuardo, Constanza Aguado-Norese, Felipe Maza, Mauricio González, Verónica Cambiazo","doi":"10.1186/s40659-024-00556-4","DOIUrl":"10.1186/s40659-024-00556-4","url":null,"abstract":"<p><strong>Background: </strong>Aquaculture and salmon farming can cause environmental problems due to the pollution of the surrounding waters with nutrients, solid wastes and chemicals, such as antibiotics, which are used for disease control in the aquaculture facilities. Increasing antibiotic resistance in human-impacted environments, such as coastal waters with aquaculture activity, is linked to the widespread use of antibiotics, even at sub-lethal concentrations. In Chile, the world's second largest producer of salmon, aquaculture is considered the primary source of antibiotics residues in the coastal waters of northern Patagonia. Here, we evaluated whether the structure and diversity of marine bacterial community, the richness of antibiotic resistance bacteria and the frequency of antibiotic resistance genes increase in communities from the surface seawater of an area with salmon farming activities, in comparison with communities from an area without major anthropogenic disturbance.</p><p><strong>Results: </strong>The taxonomic structure of bacterial community was significantly different between areas with and without aquaculture production. Growth of the culturable fraction under controlled laboratory conditions showed that, in comparison with the undisturbed area, the bacterial community from salmon farms displayed a higher frequency of colonies resistant to the antibiotics used by the salmon industry. A higher adaptation to antibiotics was revealed by a greater proportion of multi-resistant bacteria isolated from the surface seawater of the salmon farming area. Furthermore, metagenomics data revealed a significant higher abundance of antibiotic resistant genes conferring resistance to 11 antibiotic families in the community from salmon farms, indicating that the proportion of bacteria carrying the resistance determinants was overall higher in salmon farms than in the undisturbed site.</p><p><strong>Conclusions: </strong>Our results revealed an association between bacterial communities and antibiotic resistance from surface seawater of a coastal area of Chile. Although the total bacterial community may appear comparable between sites, the cultivation technique allowed to expose a higher prevalence of antibiotic resistant bacteria in the salmon farming area. Moreover, we demonstrated that metagenomics (culture-independent) and phenotypic (culture-dependent) methods are complementary to evaluate the bacterial communities' risk for antibiotic resistance, and that a human-influenced environment (such as salmon farms) can potentiate bacteria to adapt to environmental stresses, such as antibiotics.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"84"},"PeriodicalIF":4.3,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142614706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
EZH1/2 plays critical roles in oocyte meiosis prophase I in mice. EZH1/2 在小鼠卵母细胞减数分裂前期 I 中发挥关键作用。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-08 DOI: 10.1186/s40659-024-00564-4
Ting Jiang, Chengxiu Zhang, Xinjing Cao, Yingpu Tian, Han Cai, Shuangbo Kong, Jinhua Lu, Haibin Wang, Zhongxian Lu
{"title":"EZH1/2 plays critical roles in oocyte meiosis prophase I in mice.","authors":"Ting Jiang, Chengxiu Zhang, Xinjing Cao, Yingpu Tian, Han Cai, Shuangbo Kong, Jinhua Lu, Haibin Wang, Zhongxian Lu","doi":"10.1186/s40659-024-00564-4","DOIUrl":"10.1186/s40659-024-00564-4","url":null,"abstract":"<p><strong>Backgroud: </strong>abnormalities or defects in oocyte meiosis can result in decreased oocyte quality, reduced ovarian reserve, and female diseases. However, the mechanisms of oocyte meiosis remain largely unknown, especially epigenetic regulation. Here, we explored the role of EZH1/2 (histone methyltransferase of H3K27) in mouse oocyte meiosis by inhibiting its activity and deleting its gene.</p><p><strong>Results: </strong>with embryonic ovary cultured in vitro, EZH1/2 was demonstrated to be essential for oocyte development during meiosis prophase I in mice. Activity inhibition or gene knockout of EZH1/2 resulted in cell apoptosis and a reduction in oocyte numbers within embryonic ovaries. By observing the expression of some meiotic marker protein (γ-H2AX, diplotene stage marker MSY2 and synapsis complex protein SCP1), we found that function deficiency of EZH1/2 resulted in failure of DNA double-strand breaks (DSBs) repair and break of meiotic progression in fetal mouse ovaries. Moreover, Ezh1/2 deficiency led to the suppression of ATM (Ataxia Telangiectasia Mutated kinase) phosphorylation and a decrease in the expression of key DNA repair proteins Hormad1, Mre11, Rad50, and Nbs1 in fetal mouse ovaries, underscoring the enzyme's pivotal role in initiating DNA repair. RNA-seq analysis revealed that Ezh1/2-deletion induced abnormal expression of multiple genes involved into several function of oocyte development in embryonic ovaries. Knockout of Ezh1/2 in ovaries also affected the levels of H3K9me3 and H4K20me2, as well as the expression of their target genes L3mbtl4 and Fbxo44.</p><p><strong>Conclusions: </strong>our study demonstrated that EZH1/2 plays a role in the DSBs repair in oocyte meiosis prophase I via multiple mechanisms and offers new insights into the physiological regulatory role of histone modification in fetal oocyte guardianship and female fertility.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"83"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545252/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotyping of a new yeast mapping population reveals differences in the activation of the TORC1 signalling pathway between wild and domesticated yeast strains. 对一个新的酵母制图群体进行表型分析,发现野生酵母和驯化酵母菌株在激活 TORC1 信号通路方面存在差异。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-07 DOI: 10.1186/s40659-024-00563-5
Guilherme Rocha, Melissa Gómez, Camila Baeza, Francisco Salinas, Claudio Martínez, Eduardo I Kessi-Pérez
{"title":"Phenotyping of a new yeast mapping population reveals differences in the activation of the TORC1 signalling pathway between wild and domesticated yeast strains.","authors":"Guilherme Rocha, Melissa Gómez, Camila Baeza, Francisco Salinas, Claudio Martínez, Eduardo I Kessi-Pérez","doi":"10.1186/s40659-024-00563-5","DOIUrl":"10.1186/s40659-024-00563-5","url":null,"abstract":"<p><p>Domestication can be understood as a symbiotic relationship that benefits both domesticator and domesticated species, involving multiple genetic changes that configure the phenotype of the domesticated species. One of the most important domesticated species is the yeast Saccharomyces cerevisiae, with both domesticated strains used for different fermentations processes for thousands of years and wild strains existing only in environments without human intervention; however, little is known about the phenotypic effects associated with its domestication. In the present work, we studied the effect of domestication on yeast TORC1 activation, a pleiotropic signalling pathway conserved across the eukaryotic domain. To achieve this goal, we improved a previously generated methodology to assess TORC1 activation, which turned out to be as effective as the original one but also presents several practical advantages for its application (such as facilitating confirmation of transformants and putting the Luc reporter gene under the control of the same P<sub>RPL26A</sub> promoter for each transformed strain). We then generated a mapping population, the so-called TOMAN-G population, derived from the \"1002 Yeast Genomes Project\" population, the most comprehensive catalogue of the genetic variation in yeasts. Finally, strains belonging to the TOMAN-G population were phenotyped for TORC1 activation, and then we compared the results obtained between yeast strains with different ecological origins, finding differences in TORC1 activation between wild and domesticated strains, particularly wine strains. These results are indicative of the effect of domestication on TORC1 activation, specifically that the different evolutionary trajectories of wild and domesticated strains have in fact caused differences in the activation of this pathway; furthermore, the phenotypic data obtained in this work could be used to continue underlying the genetic bases of TORC1 activation, a process that is still not fully understood, using techniques such as GWAS to search for specific genetic variants underlying the observed phenotypic variability and phylogenetic tree inferences to gain insight into the evolutionary relationships between these genetic variants.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"82"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545388/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions. GLUT1 和肾素受体介导了高糖条件下肾内髓集合管细胞对 TGF-β 和 CTGF 的不同调控。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-07 DOI: 10.1186/s40659-024-00560-8
Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez
{"title":"GLUT1 and prorenin receptor mediate differential regulation of TGF-β and CTGF in renal inner medullary collecting duct cells during high glucose conditions.","authors":"Paulina E Larenas, Pilar Cárdenas, Monserrat Aguirre-Delgadillo, Carlos Moris, Dulce E Casarini, Zoe Vallotton, Minolfa C Prieto, Alexis A Gonzalez","doi":"10.1186/s40659-024-00560-8","DOIUrl":"10.1186/s40659-024-00560-8","url":null,"abstract":"<p><strong>Background: </strong>During diabetes, prorenin is highly produced by the renal collecting ducts. The binding of prorenin to (pro)renin receptor (PRR) on the apical plasma membrane triggers intracellular profibrotic genes, including TGF-β and CTGF. However, the underlying mechanisms contributing to the stimulation of these pathways remain unclear. Hence, we hypothesize that the glucose transporter-1 (GLUT1) favors the PRR-dependent stimulation of TGF-β and CTGF in the distal nephron segments during high glucose (HG) conditions.</p><p><strong>Methods: </strong>To test this hypothesis, primary cultured renal inner medullary collecting duct (IMCD) cells were treated with normal glucose (NG, 5 mM) or high glucose (HG, 25 mM) for 48 h in the presence or absence of the GLUT1-specific inhibitor BAY 876 (2 nM). Additionally, IMCD cells were treated with the PRR antagonist PRO20. The expression of TGF-β and CTGF was quantified by immunoblot and qRT-PCR.</p><p><strong>Results: </strong>HG increased GLUT1 mRNA and protein abundance, while BAY 876 inhibited these responses. HG treatment upregulated PRR, but the concomitant treatment with BAY 876 partially prevented this effect. TGF-β and CTGF expressions were augmented in IMCD cells treated with HG. However, PRO20 prevented the increases in TGF-β but not those of CTGF. GLUT1 inhibition partially prevented the increases in reactive oxygen species (ROS) during HG while PRO20 did not. ROS scavenging impaired CTGF upregulation during HG conditions. Additionally, long-term exposure to HG increases lipid peroxidation and reduced cell viability.</p><p><strong>Conclusions: </strong>The data indicate that glucose transportation via GLUT1 is implicated in the PRR-dependent upregulation of TGF-β while CTGF is mediated mainly via a mechanism depending on ROS formation in renal medullary collecting duct cells.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"81"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing. 用于植物育种的基因组工具的进展:利用 DNA 分子标记、基因组选择和基因组编辑。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-07 DOI: 10.1186/s40659-024-00562-6
Rahul Kumar, Sankar Prasad Das, Burhan Uddin Choudhury, Amit Kumar, Nitish Ranjan Prakash, Ramlakhan Verma, Mridul Chakraborti, Ayam Gangarani Devi, Bijoya Bhattacharjee, Rekha Das, Bapi Das, H Lembisana Devi, Biswajit Das, Santoshi Rawat, Vinay Kumar Mishra
{"title":"Advances in genomic tools for plant breeding: harnessing DNA molecular markers, genomic selection, and genome editing.","authors":"Rahul Kumar, Sankar Prasad Das, Burhan Uddin Choudhury, Amit Kumar, Nitish Ranjan Prakash, Ramlakhan Verma, Mridul Chakraborti, Ayam Gangarani Devi, Bijoya Bhattacharjee, Rekha Das, Bapi Das, H Lembisana Devi, Biswajit Das, Santoshi Rawat, Vinay Kumar Mishra","doi":"10.1186/s40659-024-00562-6","DOIUrl":"10.1186/s40659-024-00562-6","url":null,"abstract":"<p><p>Conventional pre-genomics breeding methodologies have significantly improved crop yields since the mid-twentieth century. Genomics provides breeders with advanced tools for whole-genome study, enabling a direct genotype-phenotype analysis. This shift has led to precise and efficient crop development through genomics-based approaches, including molecular markers, genomic selection, and genome editing. Molecular markers, such as SNPs, are crucial for identifying genomic regions linked to important traits, enhancing breeding accuracy and efficiency. Genomic resources viz. genetic markers, reference genomes, sequence and protein databases, transcriptomes, and gene expression profiles, are vital in plant breeding and aid in the identification of key traits, understanding genetic diversity, assist in genomic mapping, support marker-assisted selection and speeding up breeding programs. Advanced techniques like CRISPR/Cas9 allow precise gene modification, accelerating breeding processes. Key techniques like Genome-Wide Association study (GWAS), Marker-Assisted Selection (MAS), and Genomic Selection (GS) enable precise trait selection and prediction of breeding outcomes, improving crop yield, disease resistance, and stress tolerance. These tools are handy for complex traits influenced by multiple genes and environmental factors. This paper explores new genomic technologies like molecular markers, genomic selection, and genome editing for plant breeding showcasing their impact on developing new plant varieties.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"80"},"PeriodicalIF":4.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers. 钠/抗坏血酸共转运体 SVCT2 分布于慢肌骨骼肌纤维 M 带水平的横纹肌膜富集区。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-06 DOI: 10.1186/s40659-024-00554-6
Daniel Sandoval, Jessica Mella, Jorge Ojeda, Francisca Bermedo-García, Marcela Low, Sylvain Marcellini, Maite A Castro, Mariana Casas, Enrique Jaimovich, Juan Pablo Henríquez
{"title":"The sodium/ascorbic acid co-transporter SVCT2 distributes in a striated membrane-enriched domain at the M-band level in slow-twitch skeletal muscle fibers.","authors":"Daniel Sandoval, Jessica Mella, Jorge Ojeda, Francisca Bermedo-García, Marcela Low, Sylvain Marcellini, Maite A Castro, Mariana Casas, Enrique Jaimovich, Juan Pablo Henríquez","doi":"10.1186/s40659-024-00554-6","DOIUrl":"10.1186/s40659-024-00554-6","url":null,"abstract":"<p><strong>Background: </strong>Vitamin C plays key roles in cellular homeostasis, functioning as a potent antioxidant and a positive regulator of cell differentiation. In skeletal muscle, the vitamin C/sodium co-transporter SVCT2 is preferentially expressed in oxidative slow fibers. SVCT2 is up-regulated during the early fusion of primary myoblasts and decreases during initial myotube growth, indicating the relevance of vitamin C uptake via SVCT2 for early skeletal muscle differentiation and fiber-type definition. However, our understanding of SVCT2 expression and function in adult skeletal muscles is still limited.</p><p><strong>Results: </strong>In this study, we demonstrate that SVCT2 exhibits an intracellular distribution in chicken slow skeletal muscles, following a highly organized striated pattern. A similar distribution was observed in human muscle samples, chicken cultured myotubes, and isolated mouse myofibers. Immunohistochemical analyses, combined with biochemical cell fractionation experiments, reveal a strong co-localization of SVCT2 with intracellular detergent-soluble membrane fractions at the central sarcomeric M-band, where it co-solubilizes with sarcoplasmic reticulum proteins. Remarkably, electrical stimulation of cultured myofibers induces the redistribution of SVCT2 into a vesicular pattern.</p><p><strong>Conclusions: </strong>Our results provide novel insights into the dynamic roles of SVCT2 in different intracellular compartments in response to functional demands.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"79"},"PeriodicalIF":4.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542426/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing carotenoid production in Xanthophyllomyces dendrorhous/Phaffia rhodozyma: SREBP pathway activation and promoter engineering. 提高黄ophyllomyces dendrorhous/Phaffia rhodozyma 的类胡萝卜素产量:SREBP 通路激活和启动子工程。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-11-05 DOI: 10.1186/s40659-024-00559-1
Alejandro Durán, Maximiliano Venegas, Salvador Barahona, Dionisia Sepúlveda, Marcelo Baeza, Víctor Cifuentes, Jennifer Alcaíno
{"title":"Increasing carotenoid production in Xanthophyllomyces dendrorhous/Phaffia rhodozyma: SREBP pathway activation and promoter engineering.","authors":"Alejandro Durán, Maximiliano Venegas, Salvador Barahona, Dionisia Sepúlveda, Marcelo Baeza, Víctor Cifuentes, Jennifer Alcaíno","doi":"10.1186/s40659-024-00559-1","DOIUrl":"10.1186/s40659-024-00559-1","url":null,"abstract":"<p><p>The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a high-value carotenoid with biotechnological relevance in the nutraceutical and aquaculture industries. However, enhancing carotenoid production through strain engineering remains an ongoing challenge. Recent studies have demonstrated that carotenogenesis in X. dendrorhous is regulated by the SREBP pathway, which includes the transcription factor Sre1, particularly in the mevalonate pathway that also produces precursors used for ergosterol synthesis. In this study, we explored a novel approach to enhance carotenoid synthesis by replacing the native crtE promoter, which drives geranylgeranyl pyrophosphate synthesis (the step where carotenogenesis diverges from ergosterol biosynthesis), with the promoter of the HMGS gene, which encodes 3-hydroxy-3-methylglutaryl-CoA synthase from the mevalonate pathway. The impact of this substitution was evaluated in two mutant strains that already overproduce carotenoids due to the presence of an active Sre1 transcription factor: CBS.cyp61-, which does not produce ergosterol and strain CBS.SRE1N.FLAG, which constitutively expresses the active form of Sre1. Wild-type strain CBS6938 was used as a control. Our results showed that this modification increased the crtE transcript levels more than threefold and fourfold in CBS.cyp61<sup>-</sup>.pHMGS/crtE and CBS.SRE1N.FLAG.pHMGS/crtE, respectively, resulting in 1.43-fold and 1.22-fold increases in carotenoid production. In contrast, this modification did not produce significant changes in the wild-type strain, which lacks the active Sre1 transcription factor under the same culture conditions. This study highlights the potential of promoter substitution strategies involving genes regulated by Sre1 to enhance carotenoid production, specifically in strains where the SREBP pathway is activated, offering a promising avenue for strain improvement in industrial applications.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"78"},"PeriodicalIF":4.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DLK1 and DLK2, two non-canonical ligands of NOTCH receptors, differentially modulate the osteogenic differentiation of mesenchymal C3H10T1/2 cells. NOTCH受体的两种非经典配体DLK1和DLK2对间充质C3H10T1/2细胞的成骨分化具有不同的调节作用。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-10-30 DOI: 10.1186/s40659-024-00561-7
María-Milagros Rodríguez-Cano, María-Julia González-Gómez, Eva-María Monsalve, María-José M Díaz-Guerra, Moustapha Kassem, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón
{"title":"DLK1 and DLK2, two non-canonical ligands of NOTCH receptors, differentially modulate the osteogenic differentiation of mesenchymal C3H10T1/2 cells.","authors":"María-Milagros Rodríguez-Cano, María-Julia González-Gómez, Eva-María Monsalve, María-José M Díaz-Guerra, Moustapha Kassem, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón","doi":"10.1186/s40659-024-00561-7","DOIUrl":"10.1186/s40659-024-00561-7","url":null,"abstract":"<p><strong>Background: </strong>C3H10T1/2 is a mesenchymal cell line capable of differentiating into osteoblasts, adipocytes and chondrocytes. The differentiation of these cells into osteoblasts is modulated by various transcription factors, such as RUNX2. Additionally, several interconnected signaling pathways, including the NOTCH pathway, play a crucial role in modulating their differentiation into mature bone cells. We have investigated the roles of DLK1 and DLK2, two non-canonical inhibitory ligands of NOTCH receptors, in the osteogenic differentiation of C3H10T1/2 cells.</p><p><strong>Results: </strong>Our results corroborate existing evidence that DLK1 acts as an inhibitor of osteogenesis. In contrast, we demonstrate for the first time that DLK2 enhances this differentiation process. Additionally, our data suggest that NOTCH2, 3 and 4 receptors may promote osteogenesis, as indicated by their increased expression during this process, whereas NOTCH1 expression, which decreases during cell differentiation, might inhibit osteogenesis. Moreover, treatment with DAPT, a NOTCH signaling inhibitor, impeded osteogenic differentiation. We have confirmed the increase in ERK1/2 MAPK and p38 MAPK phosphorylation in C3H10T1/2 cells induced to differentiate to osteoblasts. Our new findings reveal increased ERK1/2 MAPK phosphorylation in differentiated C3H10T1/2 cells with a decrease in DLK1 expression or an overexpression of DLK2, which is coincident with the behavior of those transfectants where we have detected an increase in osteogenic differentiation. Additionally, p38 MAPK phosphorylation increases in differentiated C3H10T1/2 cells with reduced DLK1 levels.</p><p><strong>Conclusions: </strong>Our results suggest that DLK1 may inhibit osteogenesis, while DLK2 may promote it, by modulating NOTCH signaling and the phosphorylation of ERK1/2 and p38 MAPK pathways. Given the established inhibitory effect of DLK proteins on NOTCH signaling, these new insights could pave the way for developing future therapeutic strategies aimed at treating bone diseases.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"77"},"PeriodicalIF":4.3,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142543563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. 在卵泡发育的关键阶段对牛卵泡细胞进行横向转录组分析。
IF 4.3 2区 生物学
Biological Research Pub Date : 2024-10-28 DOI: 10.1186/s40659-024-00558-2
Henry David Mogollón García, Rodrigo de Andrade Ferrazza, Julian Camilo Ochoa, Flávia Florencio de Athayde, Pedro Marcus Pereira Vidigal, Milo Wiltbank, John Patrick Kastelic, Roberto Sartori, João Carlos Pinheiro Ferreira
{"title":"Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development.","authors":"Henry David Mogollón García, Rodrigo de Andrade Ferrazza, Julian Camilo Ochoa, Flávia Florencio de Athayde, Pedro Marcus Pereira Vidigal, Milo Wiltbank, John Patrick Kastelic, Roberto Sartori, João Carlos Pinheiro Ferreira","doi":"10.1186/s40659-024-00558-2","DOIUrl":"10.1186/s40659-024-00558-2","url":null,"abstract":"<p><strong>Background: </strong>There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows.</p><p><strong>Results: </strong>Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses.</p><p><strong>Conclusions: </strong>The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"76"},"PeriodicalIF":4.3,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514973/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信