Seon-Pil Jin, Jang-Hee Oh, Namjoo Kaylee Kim, Jin Ho Chung
{"title":"H Antigen expression modulates epidermal Keratinocyte Integrity and differentiation.","authors":"Seon-Pil Jin, Jang-Hee Oh, Namjoo Kaylee Kim, Jin Ho Chung","doi":"10.1186/s40659-024-00541-x","DOIUrl":"https://doi.org/10.1186/s40659-024-00541-x","url":null,"abstract":"<p><strong>Background: </strong>ABO blood group antigens (ABH antigens) are carbohydrate chains glycosylated on epithelial and red blood cells. Recent findings suggest reduced ABH expression in psoriasis and atopic dermatitis, a chronic inflammatory skin disease with retained scale. H antigen, a precursor for A and B antigens, is synthesized by fucosyltransferase 1 (FUT1). Desmosomes, critical for skin integrity, are known to require N-glycosylation for stability. We investigate the impact of H antigens, a specific type of glycosylation, on desmosomes in keratinocytes.</p><p><strong>Method: </strong>Primary human keratinocytes were transfected with FUT1 siRNA or recombinant adenovirus for FUT1 overexpression. Cell adhesion and desmosome characteristics and their underlying mechanisms were analyzed.</p><p><strong>Result: </strong>The knockdown of FUT1, responsible for H2 antigen expression in the skin, increased cell-cell adhesive strength and desmosome size in primary cultured keratinocytes without altering the overall desmosome structure. Desmosomal proteins, including desmogleins or plakophilin, were upregulated, suggesting enhanced desmosome assembly. Reduced H2 antigen expression via FUT1 knockdown led to increased keratinocyte differentiation, evidenced by elevated expression of differentiation markers. Epidermal growth factor receptor (EGFR) has been described to be associated with FUT1 and promotes cell migration and differentiation. The effects of FUT1 knockdown were recapitulated by an EGFR inhibitor concerning desmosomal proteins and cellular differentiation. Further investigation demonstrated that the FUT1 knockdown reduced EGFR signaling by lowering the levels of EGF ligands rather than directly regulating EGFR activity. Moreover, FUT1 overexpression reversed the effects observed in FUT1 knockdown, resulting in the downregulation of desmosomal proteins and differentiation markers while increasing both mRNA and protein levels of EGFR ligands.</p><p><strong>Conclusion: </strong>The expression level of FUT1 in the epidermis appears to influence cell-cell adhesion and keratinocyte differentiation status, at least partly through regulation of H2 antigen and EGFR ligand expression. These observations imply that the fucosylation of the H2 antigen by FUT1 could play a significant role in maintaining the molecular composition and regulation of desmosomes and suggest a possible involvement of the altered H2 antigen expression in skin diseases, such as psoriasis and atopic dermatitis.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"72"},"PeriodicalIF":4.3,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487879/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142457896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahui Li, Xiaolei Liu, Zengze Wang, Pengyun Xie, Min Zhu, Hanhui Zhong, Sirui Luo, Jing Tang, Guixi Mo
{"title":"Ozone therapy mitigates parthanatos after ischemic stroke.","authors":"Jiahui Li, Xiaolei Liu, Zengze Wang, Pengyun Xie, Min Zhu, Hanhui Zhong, Sirui Luo, Jing Tang, Guixi Mo","doi":"10.1186/s40659-024-00547-5","DOIUrl":"10.1186/s40659-024-00547-5","url":null,"abstract":"<p><strong>Background: </strong>Stroke is a leading cause of death worldwide, with oxidative stress and calcium overload playing significant roles in the pathophysiology of the disease. Ozone, renowned for its potent antioxidant properties, is commonly employed as an adjuvant therapy in clinical settings. Nevertheless, it remains unclear whether ozone therapy on parthanatos in cerebral ischemia-reperfusion injury (CIRI). This study aims to investigate the impact of ozone therapy on reducing parthanatos during CIRI and to elucidate the underlying mechanism.</p><p><strong>Methods: </strong>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) was utilized to mimic the generation of reactive oxygen species (ROS) in SH-SY5Y cell reperfusion injury in vitro, and an in vivo ischemic stroke model was established. Ozone saline was introduced for co-culture or intravenously administered to mice. Apoptosis and oxidative stress were assessed using flow cytometry and immunofluorescence. Western blotting was utilized to examine the expression of parthanatos signature proteins. The mechanism by which ozone inhibits parthanatos was elucidated through inhibiting PPARg or Nrf2 activity.</p><p><strong>Results: </strong>The findings demonstrated that ozone mitigated H<sub>2</sub>O<sub>2</sub>-induced parthanatos by either upregulating nuclear factor erythroid 2-related factor 2 (Nrf2) or activating peroxisome proliferator-activated receptorg (PPARg). Furthermore, through the use of calcium chelators and ROS inhibitors, it was discovered that ROS directly induced parthanatos and facilitated intracellular calcium elevation. Notably, a malignant feedback loop between ROS and calcium was identified, further amplifying the induction of parthanatos. Ozone therapy exhibited its efficacy by increasing PPARg activity or enhancing the Nrf2 translation, thereby inhibiting ROS production induced by H<sub>2</sub>O<sub>2</sub>. Concurrently, our study demonstrated that ozone treatment markedly inhibited parthanatos in stroke-afflicted mice. Additionally, ozone therapy demonstrated significant neuroprotective effects on cortical neurons, effectively suppressing parthanatos.</p><p><strong>Conclusions: </strong>These findings contribute valuable insights into the potential of ozone therapy as a therapeutic strategy for reducing parthanatos during CIRI, highlighting its impact on key molecular pathways associated with oxidative stress and calcium regulation.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"71"},"PeriodicalIF":4.3,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453019/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification and functional characteristics of CHD1L gene variants implicated in human Müllerian duct anomalies.","authors":"Shuya Chen, Yali Fan, Yujun Sun, Shenghui Li, Zhi Zheng, Chunfang Chu, Lin Li, Chenghong Yin","doi":"10.1186/s40659-024-00550-w","DOIUrl":"10.1186/s40659-024-00550-w","url":null,"abstract":"<p><strong>Background: </strong>Müllerian duct anomalies (MDAs) are congenital developmental disorders that present as a series of abnormalities within the reproductive tracts of females. Genetic factors are linked to MDAs and recent advancements in whole-exome sequencing (WES) provide innovative perspectives in this field. However, relevant mechanism has only been investigated in a restricted manner without clear elucidation of respective observations.</p><p><strong>Methods: </strong>Our previous study reported that 2 of 12 patients with MDAs harbored the CHD1L variant c.348-1G>C. Subsequently, an additional 85 MDAs patients were recruited. Variants in CHD1L were screened through the in-house database of WES performed in the cohort and two cases were identified. One presented with partial septate uterus with left renal agenesis and the other with complete septate uterus, duplicated cervices and longitudinal vaginal septum. The pathogenicity of the discovered variants was further assessed by molecular dynamics simulation and various functional assays.</p><p><strong>Results: </strong>Ultimately, two novel heterozygous CHD1L variants, including a missense variant c.956G>A (p.R319Q) and a nonsense variant c.1831C>T (p.R611*) were observed. The variants were absent in 100 controls. Altogether, the contribution yield of CHD1L to MDAs was calculated as 4.12% (4/97). All three variants were assessed as pathogenic through various functional analysis. The splice-site variant c.348-1G>C resulted in a 11 bp sequence skipping in exon 4 of CHD1L and led to nonsense mediated decay of its transcripts. Unlike WT CHD1L, the truncated R611* protein mislocalized to the cytoplasm, abolish the ability of CHD1L to promote cell migration and failed to interact with PARP1 owing to the loss of macro domain. The R319Q variant exhibited conformational disparities and showed abnormal protein recruitment behavior through laser microirradiation comparing with the WT CHD1L. All these variants impaired the CHD1L function in DNA damage repair, thus participating in MDAs.</p><p><strong>Conclusions: </strong>The current study not only expands the mutational spectrum of CHD1L in MDAs but determines three variants as pathogenic according to ACMG guidelines with reliable functional evidence. Additionally, the impairment in DNA damage repair is an underlying mechanism involved in MDAs.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"68"},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mario Sánchez-Rubio, Lorena Abarzúa-Catalán, Ana Del Valle, Maxs Méndez-Ruette, Natalia Salazar, Jacinta Sigala, Soledad Sandoval, María Inés Godoy, Alejandro Luarte, Lara J Monteiro, Roberto Romero, Mahesh A Choolani, Úrsula Wyneken, Sebastián E Illanes, Luis Federico Bátiz
{"title":"Maternal stress during pregnancy alters circulating small extracellular vesicles and enhances their targeting to the placenta and fetus.","authors":"Mario Sánchez-Rubio, Lorena Abarzúa-Catalán, Ana Del Valle, Maxs Méndez-Ruette, Natalia Salazar, Jacinta Sigala, Soledad Sandoval, María Inés Godoy, Alejandro Luarte, Lara J Monteiro, Roberto Romero, Mahesh A Choolani, Úrsula Wyneken, Sebastián E Illanes, Luis Federico Bátiz","doi":"10.1186/s40659-024-00548-4","DOIUrl":"https://doi.org/10.1186/s40659-024-00548-4","url":null,"abstract":"<p><strong>Background: </strong>Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as \"stress signals\" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues.</p><p><strong>Results: </strong>Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs.</p><p><strong>Conclusion: </strong>Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"70"},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Virginia Ruiz-Martín, Tamara Marcos, José María de Pereda, Mariano Sánchez-Crespo, Miguel Angel de la Fuente, Yolanda Bayón, Andrés Alonso
{"title":"LYP regulates SLP76 and other adaptor proteins in T cells.","authors":"Virginia Ruiz-Martín, Tamara Marcos, José María de Pereda, Mariano Sánchez-Crespo, Miguel Angel de la Fuente, Yolanda Bayón, Andrés Alonso","doi":"10.1186/s40659-024-00536-8","DOIUrl":"10.1186/s40659-024-00536-8","url":null,"abstract":"<p><strong>Background: </strong>The LYP tyrosine phosphatase presents a SNP (1858C > T) that increases the risk of developing autoimmune diseases such as type I diabetes and arthritis. It remains unclear how this SNP affects LYP function and promotes the development of these diseases. The scarce information about LYP substrates is in part responsible for the poor understanding of LYP function.</p><p><strong>Results: </strong>In this study, we identify in T lymphocytes several adaptor proteins as potential substrates targeted by LYP, including FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2. We also show that LYP co-localizes with SLP76 in microclusters, upon TCR engagement.</p><p><strong>Conclusions: </strong>These data indicate that LYP may modulate T cell activation by dephosphorylating several adaptor proteins, such as FYB, SLP-76, HS-1, Vav, SKAP1 and SKAP2 upon TCR engagement.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"69"},"PeriodicalIF":4.3,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142341513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative study of the growth, stress status and reproductive capabilities of four wild-type zebrafish (Danio rerio) lines","authors":"Céline Chevalier, Clémence Denis, Sid-Ahmed Nedjar, Yannick Ledoré, Frédéric Silvestre, Bérénice Schaerlinger, Sylvain Milla","doi":"10.1186/s40659-024-00549-3","DOIUrl":"https://doi.org/10.1186/s40659-024-00549-3","url":null,"abstract":"Zebrafish are widely used in various research fields and to fulfil the diverse research needs, numerous zebrafish lines are available, each with a unique domestication background, potentially resulting in intraspecies differences in specific biological functions. Few studies have compared multiple zebrafish lines under identical conditions to investigate both inter- and intra-line variability related to different functions. However, such variability could pose a challenge for the reproducibility of results in studies utilising zebrafish, particularly when the line used is not clearly specified. This study assessed growth, stress status (cortisol, serotonin) and reproductive capabilities (maturity, fecundity, fertilisation rate, sperm quality) of four commonly used wild-type zebrafish lines (AB, SJD, TU, WIK) using standardized protocols. The stress markers levels were found to be similar across the lines, indicating that the endocrine stress status is robust to diverse domestication histories. Variations were observed in the growth and reproductive parameters. The lines exhibited differences in the timing of puberty (86 dpf for AB and SJD lines vs. 107 dpf for the WIK line) despite achieving similar sizes, suggesting that there are line-specific variations in the induction of maturation. Additionally, the AB line demonstrated higher sperm quality than did the other lines and higher fecundity and fertilization rates than did the SJD line. The AB line also exhibiting a smaller adult size but a heavier brain relative to its body weight. These findings emphasize the importance of line selection for zebrafish research, indicating that researchers should consider line-specific traits to ensure the biological relevance and reproducibility of the results.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"15 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PTN from Leydig cells activates SDC2 and modulates human spermatogonial stem cell proliferation and survival via GFRA1","authors":"Xueheng Zhao, Lvjun Liu, Zenghui Huang, Fang Zhu, Huan Zhang, Dai Zhou","doi":"10.1186/s40659-024-00546-6","DOIUrl":"https://doi.org/10.1186/s40659-024-00546-6","url":null,"abstract":"Spermatogonial stem cells (SSCs) are essential for the maintenance and initiation of male spermatogenesis. Despite the advances in understanding SSC biology in mouse models, the mechanisms underlying human SSC development remain elusive. Here, we analyzed the signaling pathways involved in SSC regulation by testicular somatic cells using single-cell sequencing data (GEO datasets: GSE149512 and GSE112013) and identified that Leydig cells communicate with SSCs through pleiotrophin (PTN) and its receptor syndecan-2 (SDC2). Immunofluorescence, STRING prediction, and protein immunoprecipitation assays confirmed the interaction between PTN and SDC2 in spermatogonia, but their co-localization was observed only in approximately 50% of the cells. The knockdown of SDC2 in human SSC lines impaired cell proliferation, DNA synthesis, and the expression of PLZF, a key marker for SSC self-renewal. Transcriptome analysis revealed that SDC2 knockdown downregulated the expression of GFRA1, a crucial factor for SSC proliferation and self-renewal, and inhibited the HIF-1 signaling pathway. Exogenous PTN rescued the proliferation and GFRA1 expression in SDC2 knockdown SSC lines. In addition, we found downregulation of PTN and SDC2 as well as altered localization in non-obstructive azoospermia (NOA) patients, suggesting that downregulation of PTN and SDC2 may be associated with impaired spermatogenesis. Our results uncover a novel mechanism of human SSC regulation by the testicular microenvironment and suggest a potential therapeutic target for male infertility.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"4 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142251242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Leroux, Micaela Roque, Elina Casas, Jacques Leng, Christelle Guibert, Beatrice L’Azou, Hugo Oliveira, Joëlle Amédée, Bruno Paiva dos Santos
{"title":"The effect of CGRP and SP and the cell signaling dialogue between sensory neurons and endothelial cells","authors":"Alice Leroux, Micaela Roque, Elina Casas, Jacques Leng, Christelle Guibert, Beatrice L’Azou, Hugo Oliveira, Joëlle Amédée, Bruno Paiva dos Santos","doi":"10.1186/s40659-024-00538-6","DOIUrl":"https://doi.org/10.1186/s40659-024-00538-6","url":null,"abstract":"Increasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e. calcitonin gene-related peptide (CGRP) and substance P (SP). Nonetheless, still little is known about the cell signaling pathways and mechanism of action in neurovascular coupling. Here, in order to characterize the communication between SNs and ECs at molecular level, we evaluated the effect of SNs and the neuropeptides CGRP and SP on ECs. We focused on different pathways known to play a role on endothelial functions: calcium signaling, p38 and Erk1/2; the control of signal propagation through Cx43; and endothelial functions through the production of nitric oxide (NO). The effect of SNs was evaluated on ECs Ca2+ influx, the expression of Cx43, endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production, p38, ERK1/2 as well as their phosphorylated forms. In addition, the role of CGRP and SP were either analyzed using respective antagonists in the co-culture model, or by adding directly on the ECs monocultures. We show that capsaicin-stimulated SNs induce increased Ca2+ influx in ECs. SNs stimulate the increase of NO production in ECs, probably involving a decrease in the inhibitory eNOS T495 phosphorylation site. The neuropeptide CGRP, produced by SNs, seems to be one of the mediators of this effect in ECs since NO production is decreased in the presence of CGRP antagonist in the co-culture of ECs and SNs, and increased when ECs are stimulated with synthetic CGRP. Taken together, our results suggest that SNs play an important role in the control of the endothelial cell functions through CGRP production and NO signaling pathway.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"66 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nengliang Duan, Yuanshuai Ran, Huapei Wang, Ya Luo, Zhixiang Gao, Xingyu Lu, Fengmei Cui, Qiu Chen, Boxin Xue, Xiaolong Liu
{"title":"Mouse testicular macrophages can independently produce testosterone and are regulated by Cebpb","authors":"Nengliang Duan, Yuanshuai Ran, Huapei Wang, Ya Luo, Zhixiang Gao, Xingyu Lu, Fengmei Cui, Qiu Chen, Boxin Xue, Xiaolong Liu","doi":"10.1186/s40659-024-00544-8","DOIUrl":"https://doi.org/10.1186/s40659-024-00544-8","url":null,"abstract":"Testicular macrophages (TM) have long been recognized for their role in immune response within the testicular environment. However, their involvement in steroid hormone synthesis, particularly testosterone, has not been fully elucidated. This study aims to explore the capability of TM to synthesize and secrete testosterone de novo and to investigate the regulatory mechanisms involved. Transcriptomic analysis revealed significant expression of Cyp11a1, Cyp17a1, Hsd3b1, and Hsd17b3 in TM, which are key enzymes in the testosterone synthesis pathway. qPCR analysis and immunofluorescence validation confirmed the autonomous capability of TM to synthesize testosterone. Ablation of TM in mice resulted in decreased physiological testosterone levels, underscoring the significance of TM in maintaining testicular testosterone levels. Additionally, the study also demonstrated that Cebpb regulates the expression of these crucial genes, thereby modulating testosterone synthesis. This research establishes that TM possess the autonomous capacity to synthesize and secrete testosterone, contributing significantly to testicular testosterone levels. The transcription factor Cebpb plays a crucial role in this process by regulating the expression of key genes involved in testosterone synthesis.","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"20 1","pages":""},"PeriodicalIF":6.7,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerardo Núñez-Lillo, Victoria Lillo-Carmona, Alonso G Pérez-Donoso, Romina Pedreschi, Reinaldo Campos-Vargas, Claudio Meneses
{"title":"Fruit sugar hub: gene regulatory network associated with soluble solids content (SSC) in Prunus persica.","authors":"Gerardo Núñez-Lillo, Victoria Lillo-Carmona, Alonso G Pérez-Donoso, Romina Pedreschi, Reinaldo Campos-Vargas, Claudio Meneses","doi":"10.1186/s40659-024-00539-5","DOIUrl":"10.1186/s40659-024-00539-5","url":null,"abstract":"<p><p>Chilean peach growers have achieved worldwide recognition for their high-quality fruit products. Among the main factors influencing peach fruit quality, sweetness is pivotal for maintaining the market's competitiveness. Numerous studies have been conducted in different peach-segregating populations to unravel SSC regulation. However, different cultivars may also have distinct genetic conformation, and other factors, such as environmental conditions, can significantly impact SSC. Using a transcriptomic approach with a gene co-expression network analysis, we aimed to identify the regulatory mechanism that controls the sugar accumulation process in an 'O × N' peach population. This population was previously studied through genomic analysis, associating LG5 with the genetic control of the SSC trait. The results obtained in this study allowed us to identify 91 differentially expressed genes located on chromosome 5 of the peach genome as putative new regulators of sugar accumulation in peach, together with a regulatory network that involves genes directly associated with sugar transport (PpSWEET15), cellulose biosynthesis (PpCSLG2), flavonoid biosynthesis (PpPAL1), pectin modifications (PpPG, PpPL and PpPMEi), expansins (PpEXPA1 and PpEXPA8) and several transcription factors (PpC3H67, PpHB7, PpRVE1 and PpCBF4) involved with the SSC phenotype. These results contribute to a better understanding of the genetic control of the SSC trait for future breeding programs in peaches.</p>","PeriodicalId":9084,"journal":{"name":"Biological Research","volume":"57 1","pages":"63"},"PeriodicalIF":4.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}