Brain ResearchPub Date : 2024-12-18DOI: 10.1016/j.brainres.2024.149408
Nanxi Li, Lishan Huang, Bin Zhang, Wenwen Zhu, Wenbin Dai, Sen Li, Houping Xu
{"title":"The mechanism of different orexin/hypocretin neuronal projections in wakefulness and sleep.","authors":"Nanxi Li, Lishan Huang, Bin Zhang, Wenwen Zhu, Wenbin Dai, Sen Li, Houping Xu","doi":"10.1016/j.brainres.2024.149408","DOIUrl":"https://doi.org/10.1016/j.brainres.2024.149408","url":null,"abstract":"<p><p>Since the discovery of orexin/hypocretin, numerous studies have accumulated evidence demonstrating its key role in various aspects of neuromodulation, including addiction, motivation, and arousal. This paper focuses on the projection of orexin neurons to specific target brain regions through distinct neural pathways to regulate sleep and arousal. We provide a detailed discussion of the projection mechanisms of orexin neurons to downstream neurons, particularly emphasizing their activation of monoaminergic and cholinergic neurons associated with arousal. Additionally, we briefly explore the immune response and inflammatory factors linked to the loss of orexin neurons. Our findings underscore the significance of understanding specific neural projections in the generation and maintenance of arousal, which could guide advancements in neuroscience and lead to new therapeutic opportunities for treating insomnia or narcolepsy.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149408"},"PeriodicalIF":2.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain ResearchPub Date : 2024-12-18DOI: 10.1016/j.brainres.2024.149407
Yue Cai, Xuxia Wang, Xi Chen, Sijie Liu, Linlin Cheng, Yan Kang, Fuchun Lin
{"title":"Lactobacillus casei Zhang prevents hippocampal atrophy and cognitive impairment in rats with type 2 diabetes by regulating blood glucose levels.","authors":"Yue Cai, Xuxia Wang, Xi Chen, Sijie Liu, Linlin Cheng, Yan Kang, Fuchun Lin","doi":"10.1016/j.brainres.2024.149407","DOIUrl":"10.1016/j.brainres.2024.149407","url":null,"abstract":"<p><strong>Purpose: </strong>Lactobacillus casei Zhang (LCZ) has health benefits, such as the ability to improve blood glucose levels in individuals with type 2 diabetes mellitus (T2DM). However, little is known about the effects of LCZ on brain structural plasticity and cognitive function in T2DM. The aims of this study were to determine whether LCZ can prevent and alleviate brain damage and memory impairment in T2DM, and to understand the mechanisms underlying the effects of LCZ in T2DM.</p><p><strong>Methods: </strong>Forty-one male Sprague-Dawley rats were divided into the saline control (CON, n = 14), T2DM (n = 14) and T2DM + LCZ (n = 13) groups. Magnetic resonance imaging (MRI) was used to evaluate alterations in brain structure among these three groups. The novel object recognition and Y-maze tests were conductedto assess cognitive function. Histological and immunohistochemical analysis, including Nissl staining, Golgi-Cox staining and glial fibrillary acidic protein immunostaining, were performed to explore the pathophysiological mechanisms underlying brain structural changes.</p><p><strong>Results: </strong>T2DM rats presented hyperglycemia, cognitive decline, hippocampal atrophy, and damage to hippocampal neurons and astrocytes. Compared with those in the T2DM groups, rats in the T2DM + LCZ group presented lower blood glucose levels, better cognitive function, a larger hippocampal volume, and more normal hippocampal neurons and astrocytes. There was no significant difference in these metrics between rats in the T2DM + LCZ and CON groups.</p><p><strong>Conclusion: </strong>Hyperglycemia-induced damage to hippocampal neurons and astrocytes may lead to hippocampal atrophy and cognitive dysfunction in T2DM. LCZ can effectively prevent this damage by regulating blood glucose levels, preventing brain atrophy and cognitive impairment in T2DM rats. These findings provide a scientific basis for the clinical application of LCZ.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149407"},"PeriodicalIF":2.7,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distinct contributions of BDNF/MEK/ERK1/2 signaling pathway components to whisker-dependent tactile learning and memory.","authors":"Hitomi Soumiya, Shingo Mori, Kohta Kageyama, Masateru Kawakami, Aoi Nara, Shoei Furukawa, Hidefumi Fukumitsu","doi":"10.1016/j.brainres.2024.149404","DOIUrl":"10.1016/j.brainres.2024.149404","url":null,"abstract":"<p><p>Whisker-mediated tactile perception is essential for rodent navigation, food acquisition, and social interactions. However, the molecular mechanisms underlying tactile information processing, learning, and memory have not been studied to the same extent as for other modalities. Using immunohistochemical staining, we investigated changes in regional c-Fos expression as an index of neuronal activity and phosphorylated (p)ERK1/2 as an index of ERK1/2 activity in mice trained on a tactile-cued 8-arm radial maze task. Over 12 trials, mice learned to selectively explore four baited arms covered with wire as the tactile cue while avoiding un-baited uncovered arms. The density of c-Fos<sup>+</sup> cells was significantly higher in somatosensory cortex but not frontal cortex or amygdala of mice exposed to tactile cue - bait pairing compared to mice exposed to the same maze with all arms baited with or without tactile cues (unpaired conditions). The density of pERK1/2<sup>+</sup> cells was also increased after paired trials 7 and 12 but not after paired trials 1 and 3 in frontal cortex, amygdala, and somatosensory cortex compared to mice exposed to the unpaired condition. The MEK1/2 inhibitor SL327 reduced c-Fos expression in frontal cortex and amygdala when applied during early trials, but impaired working memory when applied before later trials without affecting c-Fos expression. Heterozygous BDNF knockout mice exhibited impaired task learning and reduced pERK1/2 expression in frontal cortex and amygdala but not somatosensory cortex. These findings suggest that the BDNF/MEK/ERK1/2 pathway selectively promotes memory trace formation in frontal cortex and amygdala but not encoding in somatosensory cortex.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149404"},"PeriodicalIF":2.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluvastatin, an HMG-CoA reductase inhibitor, exerts protective effect against NMDA-induced seizure by increasing the seizure threshold and modulating membrane excitability in embryonic rat cortical neuron.","authors":"Ya-Jean Wang, Eric Hwang, Hwei-Hsien Chen, Ming-Huan Chan, Che-Jui Yeh, You-Xuan Liu, Chieh-Min Huang","doi":"10.1016/j.brainres.2024.149403","DOIUrl":"10.1016/j.brainres.2024.149403","url":null,"abstract":"<p><strong>Background: </strong>Epilepsy affects nearly 50 million people worldwide. Previous studies have indicated the neuroprotective effects of statin on several neuropathological conditions. However, it is very much unknown whether fluvastatin was able to alter the seizure types related to neuronal excitability and progression mediated by NMDA receptor activation, and the mechanisms involved in these actions are not completely understood so far. Our study evaluated the effects of fluvastatin on the NMDA-induced seizure, BK<sub>Ca</sub> channels activity, NMDA receptor activation opens BK<sub>Ca</sub> current, sodium channel current, NMDA receptor-mediated current, and hyperexcitable neuronal activity associated with activation of NMDA receptor.</p><p><strong>Methods: </strong>The effects of fluvastatin on seizure thresholds induced by NMDA were monitored in mice. The cell-attached and whole-cell patch-clamp recordings were applied to evaluate the ionic currents and action potentials of rCN or SHSY5Y neuroblastoma cells.</p><p><strong>Results: </strong>The results of our study have demonstrated that fluvastatin did increase the NMDA-induced seizure threshold and suppressed the frequency of action potentials induced by NMDA. Notably, our findings provide the evidence that fluvastatin exhibits inhibitory effects on NMDA receptor-mediated current, BK<sub>Ca</sub> channels currents, NMDA receptor activation opens BK<sub>Ca</sub> current, and sodium channel currents in rCN and SHSY5Y neuroblastoma cells.</p><p><strong>Conclusion: </strong>Our findings suggested that fluvastatin may protect against seizure types related to neuronal excitability and NMDA receptor activation by inhibiting NMDA-mediated action potentials, NMDA receptor-mediated currents, BK<sub>Ca</sub> channels, and sodium channels.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149403"},"PeriodicalIF":2.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Potential molecular mechanisms of tobacco smoke exposure in Alzheimer's disease.","authors":"Yunqi Xie, Mingxue Yang, Haochen Wang, Yuting Chen, Xiaobo Shi, Huanwen Tang, Qian Sun","doi":"10.1016/j.brainres.2024.149394","DOIUrl":"10.1016/j.brainres.2024.149394","url":null,"abstract":"<p><strong>Background: </strong>Smoking is detrimental to health, with tobacco use being a critical factor in the development of various neurodegenerative diseases, including Alzheimer's disease (AD), which progressively impairs brain function and poses a significant threat to public health. This study aims to examine the potential genetic alterations induced by smoking that are associated with AD and to investigate the underlying regulatory mechanisms. The research will provide theoretical foundations for targeted prevention and treatment strategies for AD.</p><p><strong>Methods: </strong>This study analyzed datasets from the Gene Expression Omnibus (GEO) and the Comparative Toxicogenomics Database (CTD) to identify genes affected by tobacco smoke exposure and those altered in patients with AD relative to normal controls. We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using OmicShare tools to screen for key pathways. Key genes were identified by constructing protein-protein interaction networks (PPI) in the STRING database with the aid of CytoHubba. Additionally, the binding activity of the proteins encoded by these key genes to nicotine, the main component of tobacco, was analyzed using molecular docking techniques. Finally, the analytical results were verified using Quantitative Real-Time Polymerase Chain Reaction.</p><p><strong>Results: </strong>The CTD identified 12,164 CE-related genes affected by tobacco smoke exposure. A comparison of these datasets yielded 94 common genes that were both influenced by tobacco and differentially expressed across all brain regions. The GO and KEGG pathway enrichment analyses showed that these common differentially expressed genes (DEGs) were predominantly enriched in the Wnt/β-catenin and PI3K-AKT signaling pathways. The DEGs' PPI network, constructed using the STRING database, highlighted key genes such as HSP90AB1, SOS2, MAGI1, and YWHAZ. Molecular docking studies demonstrated that nicotine binds effectively to the protein structures of these key genes, primarily through amino acid residues such as Ser and Glu. Experimental validation showed that HSP90AB1 and YWHAZ exhibited notable expression discrepancies under varying concentrations of cigarette smoke extract (CSE) treatments, particularly demonstrating a pronounced down-regulation trend at elevated concentrations.</p><p><strong>Conclusion: </strong>The study indicates that tobacco may impact the function of transmembrane transporter proteins and contribute to the development of AD by affecting key genes such as HSP90AB1 and YWHAZ, as well as signaling pathways like PI3K-AKT.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149394"},"PeriodicalIF":2.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain ResearchPub Date : 2024-12-16DOI: 10.1016/j.brainres.2024.149402
Maciel da Costa Alves, Diego Elias Pereira, Rita de Cássia de Araújo Bidô, Camila Maria Sousa de Andrade, Juliano Carlo Rufino Freitas, Camila Carolina de Menezes Santos Bertozzo, Daline Fernandes de Souza Araújo, Gerlane Coelho Bernardo Guerra, Juliana Késsia Barbosa Soares
{"title":"Phyllanthus niruri L. Administration during pregnancy and breastfeeding: Maternal evaluation and effects on initial development and adult behavior of male rat offspring.","authors":"Maciel da Costa Alves, Diego Elias Pereira, Rita de Cássia de Araújo Bidô, Camila Maria Sousa de Andrade, Juliano Carlo Rufino Freitas, Camila Carolina de Menezes Santos Bertozzo, Daline Fernandes de Souza Araújo, Gerlane Coelho Bernardo Guerra, Juliana Késsia Barbosa Soares","doi":"10.1016/j.brainres.2024.149402","DOIUrl":"10.1016/j.brainres.2024.149402","url":null,"abstract":"<p><p>The leaves of Phyllanthus niruri L. are used in folk medicine in many countries to treat various diseases. However, despite the enormous therapeutic potential, use of the plant is contraindicated during pregnancy and breastfeeding. Reports on the impacts of exposure to this plant on the development of the offspring of rats are still scarce and controversial. The aim of this study is to evaluate the effects of the administration of P. niruri aqueous extract, during pregnancy and lactation, on maternal toxicity, on postnatal physical development, and on behavioral aspects in adult male offspring. Pregnant rats were divided into three experimental groups (n = 8/group) and treated daily during pregnancy and lactation, (gavage), with vehicle and doses of 75 and 150 mg/kg of aqueous extract of P. niruri. To assess maternal toxicity; weight gain, feed intake, reproductive outcomes, and biochemical profiles were analyzed. The male pups were evaluated for physical development through the end of lactation and submitted to tests evaluating their behavior in adulthood. Treatment with the aqueous extract of P. niruri (AEPN) did not cause significant changes in the maternal and reproductive parameters analyzed. However, changes in the biochemical markers of liver function were observed. In the male offspring, the extract did not alter postnatal physical growth, but caused early opening of the ear canal and eyes. In the evaluation of adult male offspring, it was found that the groups exposed to AEPN presented behavioral changes predictive of anxiolytic effect. Brain malondialdehyde levels of male offspring whose mothers were treated with AEPN were significantly reduced. Our results demonstrate that exposure to P. niruri extract did not induce significant changes sufficiently to indicate occurrence of maternal or postnatal toxicity. In addition, in the male offspring exposed to the extract, anticipation of physical maturation parameters and anxiolytic-like behavior was observed.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149402"},"PeriodicalIF":2.7,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142852672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain ResearchPub Date : 2024-12-15DOI: 10.1016/j.brainres.2024.149400
Sabina Yasmin, Sumel Ashique, Tahreen Taj, Ashish Garg, Joy Das, Eman Shorog, Utpal Bhui, Radheshyam Pal, Samy Selim, Uttam Prasad Panigrahy, Naseem Begum, Anas Islam, Mohammad Yousuf Ansari
{"title":"The role of ACE inhibitors and ARBs in preserving cognitive function via hypertension Management: A critical Update.","authors":"Sabina Yasmin, Sumel Ashique, Tahreen Taj, Ashish Garg, Joy Das, Eman Shorog, Utpal Bhui, Radheshyam Pal, Samy Selim, Uttam Prasad Panigrahy, Naseem Begum, Anas Islam, Mohammad Yousuf Ansari","doi":"10.1016/j.brainres.2024.149400","DOIUrl":"10.1016/j.brainres.2024.149400","url":null,"abstract":"<p><p>Hypertension poses a significant risk to cognition-related disorders like dementia. As the global population ages, age-related neurological illnesses such as Alzheimer's disease are becoming increasingly prevalent. The primary hypertension treatments, angiotensin receptor blockers, and angiotensin-converting enzyme inhibitors, exhibit neuroprotective properties. However, observational studies suggest that they may independently contribute to cognitive decline and dementia. Some of these medications have shown promise in reducing cognitive impairment and amyloid buildup in Alzheimer's models. While direct comparisons between the two drug classes are limited, angiotensin receptor blockers have been associated with less brain shrinkage, lower dementia incidence, and slower cognitive decline compared to angiotensin-converting enzyme inhibitors. Both types of medications can influence cognition by passing the blood-brain barrier, with angiotensin receptor blockers potentially offering superior neuroprotective effects due to their selective blockade of the angiotensin type 1 receptor.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149400"},"PeriodicalIF":2.7,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Abnormal characteristics in disorders of consciousness: A resting-state functional magnetic resonance imaging study.","authors":"Hui Li, Linghui Dong, Jiajie Liu, Xiaonian Zhang, Hao Zhang","doi":"10.1016/j.brainres.2024.149401","DOIUrl":"10.1016/j.brainres.2024.149401","url":null,"abstract":"<p><strong>Aims: </strong>To explore the functional brain imaging characteristics of patients with disorders of consciousness (DoC).</p><p><strong>Methods: </strong>This prospective cohort study consecutively enrolled 27 patients in minimally conscious state (MCS), 23 in vegetative state (VS), and 25 age-matched healthy controls (HC). Resting-state functional magnetic resonance imaging (rs-fMRI) was employed to evaluate the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), degree centrality (DC), and functional connectivity (FC). Sliding windows approach was conducted to construct dynamic FC (dFC) matrices. Moreover, receiver operating characteristic analysis and Pearson correlation were used to distinguish these altered characteristics in DoC.</p><p><strong>Results: </strong>Both MCS and VS exhibited lower ALFF, ReHo, and DC values, along with reduced FC in multiple brain regions compared with HC. Furthermore, the values in certain regions of VS were lower than those in MCS. The primary differences in brain function between patients with varying levels of consciousness were evident in the cortico-striatopallidal-thalamo-cortical mesocircuit. Significant differences in the temporal properties of dFC (including frequency, mean dwell time, number of transitions, and transition probability) were also noted among the three groups. Moreover, these multimodal alterations demonstrated high classificatory accuracy (AUC > 0.8) and were correlated with the Coma Recovery Scale-Revised (CRS-R).</p><p><strong>Conclusion: </strong>Patients with DoC displayed abnormal patterns in local and global dynamic and static brain functions. These alterations in rs-fMRI were closely related to the level of consciousness.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149401"},"PeriodicalIF":2.7,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142823874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain ResearchPub Date : 2024-12-11DOI: 10.1016/j.brainres.2024.149393
Ricardo Augusto Leoni De Sousa, Bruno Ferreira Mendes
{"title":"T-regulatory cells and extracellular vesicles in Alzheimer's disease: New therapeutic concepts and hypotheses.","authors":"Ricardo Augusto Leoni De Sousa, Bruno Ferreira Mendes","doi":"10.1016/j.brainres.2024.149393","DOIUrl":"10.1016/j.brainres.2024.149393","url":null,"abstract":"<p><p>Cell-based treatment has experienced exponential expansion in recent years in terms of clinical application and market share among pharmaceutical companies. When malignant cells in a healthy individual produce antigenic peptides derived from mutant or improperly synthesized proteins, the immune system attacks and kills the transforming cells. This process is carried out continuously by immune cells scanning the body for altered cells that could cause some harm. T-regulatory cells (Tregs), which preserve immunological tolerance and can exert neuroprotective benefits in numerous disorders, including animal models of Alzheimer's disease (AD), have demonstrated considerable therapeutic potential. Evidence also suggests that not only Tregs, but extracellular vesicles (EVs) are involved in a wide range of diseases, such as cellular homoeostasis, infection propagation, cancer development and heart disease, and have become a promisor cell-based therapeutic field too. Nevertheless, despite significant recent clinical and commercial breakthroughs, cell-based medicines still confront numerous challenges that hinder their general translation and commercialization. These challenges include, but are not limited to, choosing the best cell source, and creating a product that is safe, adequately viable, and fits the needs of individual patients and diseases. Here, we summarize what we know about Tregs and EVs and their potential therapeutic usage in AD.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149393"},"PeriodicalIF":2.7,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142821805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exercise alleviates cognitive decline of natural aging rats by upregulating Notch-mediated autophagy signaling.","authors":"Dandan Chen, Yuan Guo, Meng Zhang, Xingran Liu, Baowen Zhang, Xianjuan Kou","doi":"10.1016/j.brainres.2024.149398","DOIUrl":"10.1016/j.brainres.2024.149398","url":null,"abstract":"<p><p>Notch signaling, a classical signaling pathway of neurogenesis, is downregulated during the aging and age-related neurodegenerative diseases. Exercise has been proposed as an effective lifestyle intervention for delaying cognitive decline. However, it remains unclear whether exercise intervention could alleviate cognitive decline by modulating neurogenesis in naturally aging rats. In this study, 21-month-old natural aging rats were used to study brain aging. The natural aging rats underwent different forms of exercise training (aerobic exercise or strength training or comprehensive exercise with aerobic exercise and strength training) for 12 consecutive weeks. The cognitive function of natural aging rats was determined by Morris Water Maze. Notch signaling, autophagy-related proteins and hippocampal neurogenesis were examined by immunofluorescence, qRT-PCR and Western blot. Results showed that natural aging rats exhibited cognitive decline, accumulation of AD pathological proteins (APP and Aβ), and decreased neurogenesis (decreased DCX, Ki67 and GFAP), compared with the young control rats. Moreover, a significant decline in Notch signaling and autophagy was found in the hippocampus of natural aging rats. However, different forms of exercise upregulated Notch signaling and its downstream target genes, as well as autophagy-related proteins, including LC3, Beclin1, and p62. In summary, our data suggest that different forms of exercise can mitigate brain aging by upregulating Notch signaling and autophagy, thereby increasing hippocampal neurogenesis and improves spatial learning and memory abilities.</p>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":" ","pages":"149398"},"PeriodicalIF":2.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142817252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}