Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)最新文献
{"title":"Geometric information in eight dimensions vs. quantum information","authors":"V. I. Tarkhanov, M. M. Nesterov","doi":"10.1117/12.801913","DOIUrl":"https://doi.org/10.1117/12.801913","url":null,"abstract":"Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89140533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hidden time interpretation of quantum mechanics and no-protocol argument","authors":"P. Kurakin","doi":"10.1117/12.801906","DOIUrl":"https://doi.org/10.1117/12.801906","url":null,"abstract":"Previously suggested hidden time interpretation of quantum mechanics allows to reproduce the same predictions as standard quantum mechanics provides, since it is based on Feynman many - paths formulation of QM. While new experimental consequences of this interpretation are under investigation, some advantages can be enumerated. (1) The interpretation is much field theoretic - like in classical sense, so it is local in mathematical sense, though quantum (physical) non-locality is preserved. (2) The interpretation is based on one type of mathematical objects, rather than two different (Hilbert space vectors and operators). (3) The interpretation, as it was argued, overcomes the problem of hidden variables in a radically new way, with no conflict to Bell's theorem. Recently an important argument against hidden variables - like formulations of quantum theory was risen - \"no protocol\" argument. It is argued in the paper, that hidden time interpretation successfully overcomes this argument.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2007-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85604527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The antiferromagnet-based nuclear spin quantum register in inhomogeneous magnetic field","authors":"A. A. Kokin","doi":"10.1117/12.683119","DOIUrl":"https://doi.org/10.1117/12.683119","url":null,"abstract":"As a large-scale quantum register, the one-dimensional chain of the magnetic atoms with nuclear spins 1/2 in thin plate of nuclear spin-free easy-axis 3D antiferromagnet is considered. The external magnetic field is directed along the easy axis, normally to the plate surface and has a week constant gradient along the nuclear spin chain. The expression for indirect inter-spin coupling, which is due to hyperfine nuclear electron coupling in atoms and spin-wave propagation in antiferromagnet, was evaluated. It was shown that near critical point of spin-flop quantum phase transition in antiferromagnet indirect nuclear spin coupling in inhomogeneous external magnetic field might have both long-range damping and oscillating dependence from interspin distance. The external magnetic field and its gradient play the role of control parameters.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87573416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Rydberg atoms to quantum computing","authors":"D. Tretyakov, I. Beterov, V. Entin, I. Ryabtsev","doi":"10.1117/12.683123","DOIUrl":"https://doi.org/10.1117/12.683123","url":null,"abstract":"Experimental aspects of an application of Rydberg atoms to quantum computing are studied. A single neutral atom trapped in an antinode of the optical lattice can represent a quantum bit. Laser excitation of two atoms in neighboring antinodes allows for obtaining of quantum entanglement of the atoms via dipole-dipole interaction which is strong for high Rydberg states. A two-qubit operation could be realized in this way. The optimal values of a principal quantum number, an interatomic distance, time of a single two-qubit operation and other parameters have been estimated. The estimates were done for 23Na and 87Rb atoms. Also experimental results of microwave spectroscopy of a few sodium Rydberg atoms at the one-photon 37S1/2 -> 37P1/2 and two-photon 37S1/2 -> 38S1/2 transitions are presented. Microwave spectroscopy can be used to detect dipole-dipole interaction between a few Rydberg atoms. The calculations showing an influence of dipole-dipole interaction on two-atom spectra are also presented. A noticeable broadening of the five-atom spectrum was observed in the experiment due to the dipole-dipole interaction.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87695187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum operations in the optically driven two-electron double-dot structure","authors":"A. V. Tsukanov","doi":"10.1117/12.683115","DOIUrl":"https://doi.org/10.1117/12.683115","url":null,"abstract":"We study the quantum dynamics of two interacting electrons in the symmetric double-dot structure under the influence of the bichromatic resonant pulse. The state vector evolution is studied for two different pulse designs. It is shown that the laser pulse can generate the effective exchange coupling between the electron spins localized in different dots. Possible applications of this effect to the quantum information processing (entanglement generation, quantum state engineering) are discussed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"13 2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90235983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Wallace tree multiplier and other components of a quantum ALU using reversible TSG gate","authors":"H. Thapliyal, M. Srinivas","doi":"10.1117/12.683126","DOIUrl":"https://doi.org/10.1117/12.683126","url":null,"abstract":"This paper presents the design of a novel modified Wallace tree multiplier, using the reversible TSG gate proposed by the authors earlier. The novelty of the TSG gate is that it can also work singly as a reversible full adder. The TSG gate is also used in this paper to design various other reversible arithmetic and logical components that can be assembled to realize a primitive reversible/quantum ALU. It is also shown that these components are optimal, in terms of number of reversible gates and garbage outputs, compared to other designs existing in literature.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87489141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algorithmic approach to quantum theory 2: method of collective behavior and Monte-Carlo method","authors":"I. Semenihin, Y. Ozhigov","doi":"10.1117/12.683113","DOIUrl":"https://doi.org/10.1117/12.683113","url":null,"abstract":"The method of collective behavior is based on the representation of real quantum particle by the swarm of classical particles which have all properties of the initial particle but have classical states like coordinates and impulse. Simulation with swarms can be more flexible and powerful than analytical methods because it preserves the methodology of classical description of dynamics. The method of collective behavior is illustrated on the diffusion Monte Carlo way of calculating stationary states of electrons.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87171000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum repeater on NV+13C color centers in diamond","authors":"A. A. Bukach, S. Kilin, A. Nizovtsev","doi":"10.1117/12.692555","DOIUrl":"https://doi.org/10.1117/12.692555","url":null,"abstract":"We suggest a concrete way to realize the quantum repeater protocol based on nitrogen-vacancy (NV) defects in diamond, feasible with present means of manipulating the defects.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"225 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85973473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algorithmic approach to quantum theory 3: bipartite entanglement dynamics in systems with random unitary transformations","authors":"A. Burkov, A. Chernyavskiy, Y. Ozhigov","doi":"10.1117/12.683108","DOIUrl":"https://doi.org/10.1117/12.683108","url":null,"abstract":"We study the problem of the most economical representation of entangled states in the classical simulations. The idea is to reduce the general form of entanglement to the bipartite entanglement which has the short representation through Schmidt expansion. The problem of such reduction is stated exactly and discussed. The example is given which shows that if we allow the linear transformation (not only unitary), the general form of entanglement cannot be described in terms of bipartite entanglement. We also study the entanglement dynamics of 2 and 3 level atoms interacting randomly and find interesting dependence of the number of its excited levels.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88582176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On computational power of classical and quantum branching programs","authors":"F. Ablayev","doi":"10.1117/12.683111","DOIUrl":"https://doi.org/10.1117/12.683111","url":null,"abstract":"We present a classical stochastic simulation technique of quantum Branching programs. This technique allows to prove the following relations among complexity classes: PrQP-BP &subuline; PP-BP and BQP-BP &subuline; PP-BP. Here BPP-BP and PP-BP stands for the classes of functions computable with bounded error and unbounded error respectively by stochastic branching program of polynomial size. BQP-BP and PrQP-BP stands the classes of functions computable with bounded error and unbounded error respectively by quantum branching program of polynomial size. Second. We present two different types, of complexity lower bounds for quantum nonuniform automata (OBDDs). We call them \"metric\" and \"entropic\" lower bounds in according to proof technique used. We present explicit Boolean functions that show that these lower bounds are tight enough. We show that when considering \"almost all Boolean functions\" on n variables our entropic lower bounds gives exponential (2c(δ)(n-log n)) lower bound for the width of quantum OBDDs depending on the error δ allowed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89302935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}