{"title":"Hidden time interpretation of quantum mechanics and no-protocol argument","authors":"P. Kurakin","doi":"10.1117/12.801906","DOIUrl":null,"url":null,"abstract":"Previously suggested hidden time interpretation of quantum mechanics allows to reproduce the same predictions as standard quantum mechanics provides, since it is based on Feynman many - paths formulation of QM. While new experimental consequences of this interpretation are under investigation, some advantages can be enumerated. (1) The interpretation is much field theoretic - like in classical sense, so it is local in mathematical sense, though quantum (physical) non-locality is preserved. (2) The interpretation is based on one type of mathematical objects, rather than two different (Hilbert space vectors and operators). (3) The interpretation, as it was argued, overcomes the problem of hidden variables in a radically new way, with no conflict to Bell's theorem. Recently an important argument against hidden variables - like formulations of quantum theory was risen - \"no protocol\" argument. It is argued in the paper, that hidden time interpretation successfully overcomes this argument.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Previously suggested hidden time interpretation of quantum mechanics allows to reproduce the same predictions as standard quantum mechanics provides, since it is based on Feynman many - paths formulation of QM. While new experimental consequences of this interpretation are under investigation, some advantages can be enumerated. (1) The interpretation is much field theoretic - like in classical sense, so it is local in mathematical sense, though quantum (physical) non-locality is preserved. (2) The interpretation is based on one type of mathematical objects, rather than two different (Hilbert space vectors and operators). (3) The interpretation, as it was argued, overcomes the problem of hidden variables in a radically new way, with no conflict to Bell's theorem. Recently an important argument against hidden variables - like formulations of quantum theory was risen - "no protocol" argument. It is argued in the paper, that hidden time interpretation successfully overcomes this argument.