八维几何信息vs量子信息

V. I. Tarkhanov, M. M. Nesterov
{"title":"八维几何信息vs量子信息","authors":"V. I. Tarkhanov, M. M. Nesterov","doi":"10.1117/12.801913","DOIUrl":null,"url":null,"abstract":"Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric information in eight dimensions vs. quantum information\",\"authors\":\"V. I. Tarkhanov, M. M. Nesterov\",\"doi\":\"10.1117/12.801913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.801913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

互补的幂等参数和它们的有序组合,被用来表示几何Clifford代数G3,0的多向量基元素作为给定参照系中几何字节的状态。有两层信息,实数可用,被区分开来。第一层是连续的。它用于在相同的计算基础上识别相似几何对象的空间方向。第二层是二进制的。它用于在计算基本身内部操作8D结构元素。一种定向的单位立方体表示,而不是矩阵表示,被用来可视化基多向量的内部结构。这两层信息都用来描述欧几里得空间和希尔伯特空间中的幺正运算——反射和旋转。结果与量子门的结果进行了比较。讨论了量子和经典信息技术的一些后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric information in eight dimensions vs. quantum information
Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信