{"title":"八维几何信息vs量子信息","authors":"V. I. Tarkhanov, M. M. Nesterov","doi":"10.1117/12.801913","DOIUrl":null,"url":null,"abstract":"Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geometric information in eight dimensions vs. quantum information\",\"authors\":\"V. I. Tarkhanov, M. M. Nesterov\",\"doi\":\"10.1117/12.801913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.801913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric information in eight dimensions vs. quantum information
Complementary idempotent paravectors and their ordered compositions, are used to represent multivector basis elements of geometric Clifford algebra G3,0 as the states of a geometric byte in a given frame of reference. Two layers of information, available in real numbers, are distinguished. The first layer is a continuous one. It is used to identify spatial orientations of similar geometric objects in the same computational basis. The second layer is a binary one. It is used to manipulate with 8D structure elements inside the computational basis itself. An oriented unit cube representation, rather than a matrix one, is used to visualize an inner structure of basis multivectors. Both layers of information are used to describe unitary operations - reflections and rotations - in Euclidian and Hilbert spaces. The results are compared with ones for quantum gates. Some consequences for quantum and classical information technologies are discussed.