{"title":"Application of Rydberg atoms to quantum computing","authors":"D. Tretyakov, I. Beterov, V. Entin, I. Ryabtsev","doi":"10.1117/12.683123","DOIUrl":null,"url":null,"abstract":"Experimental aspects of an application of Rydberg atoms to quantum computing are studied. A single neutral atom trapped in an antinode of the optical lattice can represent a quantum bit. Laser excitation of two atoms in neighboring antinodes allows for obtaining of quantum entanglement of the atoms via dipole-dipole interaction which is strong for high Rydberg states. A two-qubit operation could be realized in this way. The optimal values of a principal quantum number, an interatomic distance, time of a single two-qubit operation and other parameters have been estimated. The estimates were done for 23Na and 87Rb atoms. Also experimental results of microwave spectroscopy of a few sodium Rydberg atoms at the one-photon 37S1/2 -> 37P1/2 and two-photon 37S1/2 -> 38S1/2 transitions are presented. Microwave spectroscopy can be used to detect dipole-dipole interaction between a few Rydberg atoms. The calculations showing an influence of dipole-dipole interaction on two-atom spectra are also presented. A noticeable broadening of the five-atom spectrum was observed in the experiment due to the dipole-dipole interaction.","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.683123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental aspects of an application of Rydberg atoms to quantum computing are studied. A single neutral atom trapped in an antinode of the optical lattice can represent a quantum bit. Laser excitation of two atoms in neighboring antinodes allows for obtaining of quantum entanglement of the atoms via dipole-dipole interaction which is strong for high Rydberg states. A two-qubit operation could be realized in this way. The optimal values of a principal quantum number, an interatomic distance, time of a single two-qubit operation and other parameters have been estimated. The estimates were done for 23Na and 87Rb atoms. Also experimental results of microwave spectroscopy of a few sodium Rydberg atoms at the one-photon 37S1/2 -> 37P1/2 and two-photon 37S1/2 -> 38S1/2 transitions are presented. Microwave spectroscopy can be used to detect dipole-dipole interaction between a few Rydberg atoms. The calculations showing an influence of dipole-dipole interaction on two-atom spectra are also presented. A noticeable broadening of the five-atom spectrum was observed in the experiment due to the dipole-dipole interaction.