{"title":"RETRIEVAL APPROACH FOR DETERMINING SURFACE SUSCEPTIBILITIES AND SURFACE POROSITIES OF A SYMMETRIC METASCREEN FROM REFLECTION AND TRANSMISSION COEFFICIENTS","authors":"C. Holloway, E. Kuester, Abdulaziz H. Haddab","doi":"10.2528/pier19022305","DOIUrl":"https://doi.org/10.2528/pier19022305","url":null,"abstract":"Recently we derived generalized sheet transition conditions (GSTCs) for electromagnetic fields at the surface of a metascreen (a metasurface with a ``fishnet'' structure, i.~e., a periodic array of arbitrary spaced apertures in a relatively impenetrable surface). The parameters in these GSTCs are interpreted as effective surface susceptibilities and surface porosities, which themselves are related to the geometry of the apertures that constitute the metascreen. In this paper, we use these GSTCs to derive the plane-wave reflection ($R$) and transmission ($T$) coefficients of a symmetric metascreen, expressed in terms of these surface parameters. From these equations, we develop a retrieval approach for determining the uniquely defined effective surface susceptibilities and surface porosities that characterize the metascreen from measured or simulated data for the $R$ and $T$ coefficients. We present the retrieved surface parameters for metascreens composed of five different types of apertures (circular holes, square holes, crosses, slots, and a square aperture filled with a high-contrast dielectric). The last example exhibits interesting resonances at frequencies where no resonances exist when the aperture is not filled, which opens up the possibility of designing metasurfaces with unique filtering properties. The retrieved surface parameters are validated by comparing them to other approaches.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77099229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HIGH-SENSITIVITY AND TEMPERATURE-INSENSITIVE REFRACTOMETER BASED ON TNHF STRUCTURE FOR LOW-RANGE REFRACTIVE INDEX MEASUREMENT","authors":"F. Wang, Kaibo Pang, Tao Ma, X. Wang, Yufang Liu","doi":"10.2528/pier19102301","DOIUrl":"https://doi.org/10.2528/pier19102301","url":null,"abstract":"Refractive index (RI) measurements find extensive use in biochemical sensing field. However, currently available RI sensors exhibit excessive temperature crosstalk and have low sensitivity in the low RI range. To solve this, a high-sensitivity and temperature-insensitive refractometer based on a tapered no-core-hollow-core fiber (TNHF) structure is proposed for low-range RI measurement. The TNHF comprises two Mach-Zehnder interferometers that are introduced within the tapered nocore fiber and hollow-core fiber, thereby establishing a composite interference. The results of an experimental evaluation demonstrate that maximum sensitivities of 482.74 nm/RIU within an RI range of 1.335 ∼ 1.3462 can be achieved, which is greater than that achieved using a traditional modal interferometer structure. Significantly, the refractometer exhibits ultra-low temperature sensitivities of 0.062 dB/◦C and 6.5 pm/◦C, which can alleviate the temperature crosstalk. The refractometer can be realistically applied in many fields requiring high precision RI measurement due to its advantages of low cost, ease of manufacture, high sensitivity, and temperature insensitivity.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"69 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78310017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"INTERNAL MAGNETIC INDUCTION TOMOGRAPHY USING A SINGLE COIL","authors":"J. Feldkamp, S. Quirk","doi":"10.2528/PIER18120408","DOIUrl":"https://doi.org/10.2528/PIER18120408","url":null,"abstract":"Most imaging modalities image an object’s interior while all instrumentation, including sources and receivers, is externally located. One notable exception is ultra-sound (US), which can be miniaturized sufficiently to locate a US transducer within an object and gather data for image reconstruction. Another is cross-borehole geophysical imaging. The goal of any internal imaging modality is to provide images of greater fidelity while avoiding interfering structures. Due to the bulkiness of multi-coil magnetic induction tomography (MIT), transmitting and receiving coils are never placed within small targets (e.g., a human body). Here, we demonstrate a novel implementation of single-coil MIT that performs a scan all while the coil is located within the interior of a small, labcreated phantom consisting of salt-doped agarose. Phantom geometry is annular, consisting of a 6.0 cm diameter channel of depth 5.5 cm surrounded by a 3.0 cm thick cylindrical wall. An embedded, centrally located agarose gel annulus, 2.0 cm thick, is doped with sufficient NaCl to elevate its conductivity above that of surrounding agarose. The resulting nearly axisymmetric phantoms consist of material having conductivity ranging from 0.11 to 10.55 S/m. A scan is accomplished robotically, with the coil stubmounted on the positioning head of a 3-axis controller that positions the planar circular loop coil into 360 or 720 preset internal positions. Image reconstruction from gathered data is shown to correctly reveal the location, size and conductivity of the approximately axisymmetric inclusion.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90070384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PERFORMANCE IMPROVEMENT AND ANTENNA DESIGN OF LEFT-HANDED MATERIAL UNITS BASED ON TOPOLOGICAL DEFORMATIONS","authors":"B. You, M. Dong, Jianhua Zhou, Haike Xu","doi":"10.2528/pier19011603","DOIUrl":"https://doi.org/10.2528/pier19011603","url":null,"abstract":"In this paper, by applying topological theory, we evaluate some left-handed unit structures. Based on the classification of topological deformation, the laws and characteristics of potential electromagnetic parameters are captured. The original left-handed material unit is realized by using a circular C-shaped coupling ring, whose whole size is 10×10×0.5 mm3. Through three kinds of topological deformations, to explore the influence of topology on antenna performance, the electromagnetic parameters and left-handed characteristics of the original and modified units are compared and analyzed. For the designed handshake-shaped unit structure, simulation analysis predicts that dual-frequency, or even multi-band left-handed characteristics, can be achieved. To expand the structural performance of the handshake-shaped unit, an annular line for coupling enhancement is added inside the U-shaped structure to form an integrally coupled annular unit structure. Simulation results show that, with amplitudes of reflection coefficients of −27.1 dB and −14.5 dB, the resonance points of the improved unit structure are 3.57 GHz and 5.64 GHz, respectively. Loading the unit structure with a dual-band lefthanded characteristic, a UWB antenna is designed and analyzed in detail. Through simulation, antenna performance is most affected by interference within the range of 2.5 ∼ 5.0 GHz, which coincides with the double negative frequency band of the loaded left-handed structural unit. The notch frequency band of the designed UWB antenna, which is much wider than traditional notch antennas, is 3.62 ∼ 4.54 GHz, with a notch bandwidth of 920 MHz.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73333190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiuqiang Zhan, Xin Zhang, Baoju Wang, Nana Li, Sailing He
{"title":"TWO-PHOTON LUMINESCENCE AND SECOND HARMONIC GENERATION OF SINGLE LAYER MOLYBDENUM DISULPHIDE NANOPROBE FOR NONBLEACHING AND NONBLINKING OPTICAL BIOIMAGING","authors":"Qiuqiang Zhan, Xin Zhang, Baoju Wang, Nana Li, Sailing He","doi":"10.2528/pier19072502","DOIUrl":"https://doi.org/10.2528/pier19072502","url":null,"abstract":"Layered molybdenum disulphide (MoS2) can efficiently emit photoluminescence (PL) excited by visible light. However, one-photon PL of MoS2 for bioimaging purposes suffers from strong autofluorescence and ion-induced PL quenching. Herein, we report single layer chitosan decorated MoS2 nanosheets as nonbleaching and nonblinking optical nanoprobes under near infrared femtosecond laser excitation and their applications for two photon luminescence (TPL) and second harmonic generation (SHG) bioimaging. The TPL can resist the ion-induced quenching by the cellular membrane. The proposed TPL and SHG of single layer MoS2 show great potential for real-time, deep and multiphoton bioimaging.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84994522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"RECONSTRUCTION OF TWO-DIMENSIONAL OBJECTS BURIED INTO THREE-PART SPACE WITH LOCALLY ROUGH INTERFACES VIA DISTORTED BORN ITERATIVE METHOD","authors":"Y. Altuncu, Tulun Durukan, R. Akdogan","doi":"10.2528/pier19072203","DOIUrl":"https://doi.org/10.2528/pier19072203","url":null,"abstract":"In this paper, the reconstruction problem of inaccessible objects buried into a three-part space with locally rough interfaces is solved by Distorted Born Iterative Method (DBIM). DBIM requires the calculation of the background electric field and Green’s function in every iteration step via the solution of the direct scattering problem. Here, they are calculated numerically by using the buried object approach (BOA) which is very useful in the solutions of the problems including stratified media with locally rough interfaces. Various numerical applications have been performed to demonstrate the applicability and efficiency of the method. The method was found to be very successful in reconstructing moderate contrast objects when they were buried in the middle space. In this case, the method works effectively even if the buried objects and interface roughnesses have complex geometric structures. Moreover, the multiplicity of buried objects has no negative effect on the reconstruction results. Nevertheless, the results of reconstruction deteriorate when objects are buried in the bottom space. However, the accuracies of them are still on an acceptable level in this situation.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87844678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Kornprobst, R. A. Mauermayer, O. Neitz, J. Knapp, T. Eibert
{"title":"ON THE SOLUTION OF INVERSE EQUIVALENT SURFACE-SOURCE PROBLEMS","authors":"J. Kornprobst, R. A. Mauermayer, O. Neitz, J. Knapp, T. Eibert","doi":"10.2528/PIER19050904","DOIUrl":"https://doi.org/10.2528/PIER19050904","url":null,"abstract":"Various formulations of the inverse equivalent surface-source problem and corresponding solution approaches are discussed and investigated. Starting from the radiation integrals of electric and magnetic surface current densities, the probe-corrected inverse equivalent source formulation is set up together with different forms of side constraints such as the zero-field or Love condition. The linear systems of equations resulting from the discretized forms of these equations are solved by the normal residual (NR) and normal error (NE) systems of equations. As expected and as demonstrated by the solution of a variety of inverse equivalent surface-source problems, related to synthetic as well as realistic antenna near-field measurement data, it is found that the iterative solution of the NE equations allows for a better control of the solution error and leads in general to a slightly faster convergence. Moreover, the results show that the incorporation of the zero-field condition into the solution process is in general not beneficial, which is also supported by the structure of the NE systems of equations. If desired, Love surface current densities, or just fields in general, can more easily be computed in a post-processing step. The accuracy of the obtained near-fields and far-fields depends more on the stopping criterion of the inverse source solver than on the particular choice of the equivalent surface-source representation, where the zero-field condition may influence the stopping criterion in a rather unpredictable way.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"223 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85924544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Binhao Wang, Qiangsheng Huang, Kaixuan Chen, Jianhao Zhang, G. Kurczveil, D. Liang, S. Palermo, M. Tan, R. Beausoleil, Sailing He
{"title":"MODULATION ON SILICON FOR DATACOM: PAST, PRESENT, AND FUTURE (INVITED REVIEW)","authors":"Binhao Wang, Qiangsheng Huang, Kaixuan Chen, Jianhao Zhang, G. Kurczveil, D. Liang, S. Palermo, M. Tan, R. Beausoleil, Sailing He","doi":"10.2528/pier19102405","DOIUrl":"https://doi.org/10.2528/pier19102405","url":null,"abstract":"Datacenters become an important part of technical infrastructure. The Datacom traffic grows exponentially to satisfy the demands in IT services, storage, communications, and networking to the growing number of networked devices and users. High bandwidth and energy efficient optical interconnects are critical to improve overall productivity and efficiency in data centers. Mega-data centers are expected to address the power consumption and the cost in which optical interconnects contribute quite a large part. Silicon photonics is a promising platform to offer savings in power and potential increase in bandwidth for Datacom. Several modulation techniques are developed in silicon photonics to reduce the optical mode volume or enhance the light matter effect to further improve the modulation efficiency. Many other materials such as III-V and LiNbO3 are integrated on silicon photonics to maximize the optical link performance. This paper reviews several modulation techniques for Datacom, from vertical-cavity surface-emitting laser (VCSEL) direct modulation to silicon photonics modulators then to hybrid silicon modulators.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"33 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84998129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Harley, M. U. Saleh, S. Kingston, M. Scarpulla, C. Furse
{"title":"FAST TRANSIENT SIMULATIONS FOR MULTI-SEGMENT TRANSMISSION LINES WITH A GRAPHICAL MODEL","authors":"J. Harley, M. U. Saleh, S. Kingston, M. Scarpulla, C. Furse","doi":"10.2528/PIER19042105","DOIUrl":"https://doi.org/10.2528/PIER19042105","url":null,"abstract":"This paper studies a computationally efficient algebraic graph theory engine for simulating time-domain one-dimensional waves in a multi-segment transmission line, such as for reflectometry applications. Efficient simulation of time-domain signals in multi-segment transmission lines is challenging because the number of propagation paths (and therefore the number of operations) increases exponentially with each new interface. We address this challenge through the use of a frequencydomain, algebraic graphical model of wave propagation, which is then converted to the time domain via the Fourier transform. We use this model to achieve an exact, stable, and computationally efficient (O(NQ), where N is the number of segments and Q is the bandwidth) approach for studying onedimensional wave propagation. Our approach requires the reflection and transmission coefficients for each interface and each segment’s complex propagation constant. We compare our simulation results with known analytical solutions.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78141629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A PHYSICAL PATCH MODEL FOR GNSS-R LAND APPLICATIONS","authors":"Jiyue Zhu, L. Tsang, Haokui Xu","doi":"10.2528/PIER19031003","DOIUrl":"https://doi.org/10.2528/PIER19031003","url":null,"abstract":"We consider the Global Navigation Satellite System Reflectometry (GNSS-R) for land applications. A distinct feature of land is that the topography has multiple elevations. The rms of elevations is in meters causing random phases between different elevations, which affect the coherent wave that has definite phase and the Fresnel zone effects as shown previously by a Kirchhoff numerical simulator (KA simulator). In this paper, we develop a physical patch model that is computationally efficient. The entire area within the footprint is divided into patches. Each patch is small enough to satisfy the plane wave incidence and is large enough to ignore mutual wave interactions between patches. The bistatic scattering cross section of each patch for the coherent and incoherent field is computed. The bistatic cross section of plane wave incidence is obtained from lookup tables (LUTs) of the numerical 3D solution of Maxwell equations (NMM3D). The SWC represents the summation of weighted coherent fields over patches. The SWICI represents the summation of weighted incoherent intensities over patches. The formula of the received power is the sum of powers from the SWC and SWICI (the SWC/SWICI formula). The weighting factor of each patch is based on the geometry, spherical waves, and the considerations of field amplitudes and phase variations. We also present an alternative formula, the “correlation” formula, using the summation of power from each physical area and correlations of SWCs from areas. The SWC/SWICI formula and the “correlation” formula are shown analytically to be the same. Results are compared with the KA simulator and two common models (the coherent model and the incoherent model). Results of the patch model are consistent with the KA simulator. For the simulation cases, the results fall between the coherent model and the incoherent model. The patch model is much more computationally efficient than the KA simulator and the results are more accurate. In examples of this paper, the patch model results are independent of patch size as long as the patch size smaller than 50 m and much larger than the wavelength of GNSS-R frequency.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87673752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}