Dawei Gong, Tengfei Ma, Julian S Evans, Sailing He
{"title":"DEEP NEURAL NETWORKS FOR IMAGE SUPER-RESOLUTION IN OPTICAL MICROSCOPY BY USING MODIFIED HYBRID TASK CASCADE U-NET","authors":"Dawei Gong, Tengfei Ma, Julian S Evans, Sailing He","doi":"10.2528/pier21110904","DOIUrl":null,"url":null,"abstract":"Due to the optical diffraction limit, the resolution of a wide-field (WF) microscope cannot easily go below a few hundred nanometers. Super-resolution microscopy has the disadvantages of high cost, complex optical equipment, and high experimental environment requirements. Deep-learningbased super-resolution (DLSR) has the advantages of simple operation and low cost, and has attracted much attention recently. Here we propose a novel DLSR model named Modified Hybrid Task Cascade U-Net (MHTCUN) for image super-resolution in optical microscopy using the public biological image dataset BioSR. The MHTCUN has three stages, and we introduce a novel module named Feature Refinement Module (FRM) to extract deeper features in each stage. In each FRM, a U-Net is introduced to refine the features, and the Fourier Channel Attention Block (FCAB) is introduced in the U-Net to learn the high-level representation of the high-frequency information of different feature maps. Compared with six state-of-the-art DLSR models used for single-image super-resolution (SISR), our MHTCUN achieves the highest signal-to-noise ratio (PSNR) of 26.87 and structural similarity (SSIM) of 0.746, demonstrating that our MHTCUN has achieved the state-of-the-art in DLSR. Compared with the DLSR model DFCAN used for image super-resolution in optical microscopy specially, MHTCUN has a significant improvement in PSNR and a slight improvement in SSIM on BioSR. Finally, we finetune the trained MHTCUN on the other biological images. MHTCUN also shows good performance on denoising, contrast enhancement, and resolution enhancement.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier21110904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Due to the optical diffraction limit, the resolution of a wide-field (WF) microscope cannot easily go below a few hundred nanometers. Super-resolution microscopy has the disadvantages of high cost, complex optical equipment, and high experimental environment requirements. Deep-learningbased super-resolution (DLSR) has the advantages of simple operation and low cost, and has attracted much attention recently. Here we propose a novel DLSR model named Modified Hybrid Task Cascade U-Net (MHTCUN) for image super-resolution in optical microscopy using the public biological image dataset BioSR. The MHTCUN has three stages, and we introduce a novel module named Feature Refinement Module (FRM) to extract deeper features in each stage. In each FRM, a U-Net is introduced to refine the features, and the Fourier Channel Attention Block (FCAB) is introduced in the U-Net to learn the high-level representation of the high-frequency information of different feature maps. Compared with six state-of-the-art DLSR models used for single-image super-resolution (SISR), our MHTCUN achieves the highest signal-to-noise ratio (PSNR) of 26.87 and structural similarity (SSIM) of 0.746, demonstrating that our MHTCUN has achieved the state-of-the-art in DLSR. Compared with the DLSR model DFCAN used for image super-resolution in optical microscopy specially, MHTCUN has a significant improvement in PSNR and a slight improvement in SSIM on BioSR. Finally, we finetune the trained MHTCUN on the other biological images. MHTCUN also shows good performance on denoising, contrast enhancement, and resolution enhancement.