Dawei Gong, Tengfei Ma, Julian S Evans, Sailing He
{"title":"基于改进混合任务级联u-net的光学显微镜图像超分辨深度神经网络","authors":"Dawei Gong, Tengfei Ma, Julian S Evans, Sailing He","doi":"10.2528/pier21110904","DOIUrl":null,"url":null,"abstract":"Due to the optical diffraction limit, the resolution of a wide-field (WF) microscope cannot easily go below a few hundred nanometers. Super-resolution microscopy has the disadvantages of high cost, complex optical equipment, and high experimental environment requirements. Deep-learningbased super-resolution (DLSR) has the advantages of simple operation and low cost, and has attracted much attention recently. Here we propose a novel DLSR model named Modified Hybrid Task Cascade U-Net (MHTCUN) for image super-resolution in optical microscopy using the public biological image dataset BioSR. The MHTCUN has three stages, and we introduce a novel module named Feature Refinement Module (FRM) to extract deeper features in each stage. In each FRM, a U-Net is introduced to refine the features, and the Fourier Channel Attention Block (FCAB) is introduced in the U-Net to learn the high-level representation of the high-frequency information of different feature maps. Compared with six state-of-the-art DLSR models used for single-image super-resolution (SISR), our MHTCUN achieves the highest signal-to-noise ratio (PSNR) of 26.87 and structural similarity (SSIM) of 0.746, demonstrating that our MHTCUN has achieved the state-of-the-art in DLSR. Compared with the DLSR model DFCAN used for image super-resolution in optical microscopy specially, MHTCUN has a significant improvement in PSNR and a slight improvement in SSIM on BioSR. Finally, we finetune the trained MHTCUN on the other biological images. MHTCUN also shows good performance on denoising, contrast enhancement, and resolution enhancement.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DEEP NEURAL NETWORKS FOR IMAGE SUPER-RESOLUTION IN OPTICAL MICROSCOPY BY USING MODIFIED HYBRID TASK CASCADE U-NET\",\"authors\":\"Dawei Gong, Tengfei Ma, Julian S Evans, Sailing He\",\"doi\":\"10.2528/pier21110904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the optical diffraction limit, the resolution of a wide-field (WF) microscope cannot easily go below a few hundred nanometers. Super-resolution microscopy has the disadvantages of high cost, complex optical equipment, and high experimental environment requirements. Deep-learningbased super-resolution (DLSR) has the advantages of simple operation and low cost, and has attracted much attention recently. Here we propose a novel DLSR model named Modified Hybrid Task Cascade U-Net (MHTCUN) for image super-resolution in optical microscopy using the public biological image dataset BioSR. The MHTCUN has three stages, and we introduce a novel module named Feature Refinement Module (FRM) to extract deeper features in each stage. In each FRM, a U-Net is introduced to refine the features, and the Fourier Channel Attention Block (FCAB) is introduced in the U-Net to learn the high-level representation of the high-frequency information of different feature maps. Compared with six state-of-the-art DLSR models used for single-image super-resolution (SISR), our MHTCUN achieves the highest signal-to-noise ratio (PSNR) of 26.87 and structural similarity (SSIM) of 0.746, demonstrating that our MHTCUN has achieved the state-of-the-art in DLSR. Compared with the DLSR model DFCAN used for image super-resolution in optical microscopy specially, MHTCUN has a significant improvement in PSNR and a slight improvement in SSIM on BioSR. Finally, we finetune the trained MHTCUN on the other biological images. MHTCUN also shows good performance on denoising, contrast enhancement, and resolution enhancement.\",\"PeriodicalId\":90705,\"journal\":{\"name\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2528/pier21110904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier21110904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEEP NEURAL NETWORKS FOR IMAGE SUPER-RESOLUTION IN OPTICAL MICROSCOPY BY USING MODIFIED HYBRID TASK CASCADE U-NET
Due to the optical diffraction limit, the resolution of a wide-field (WF) microscope cannot easily go below a few hundred nanometers. Super-resolution microscopy has the disadvantages of high cost, complex optical equipment, and high experimental environment requirements. Deep-learningbased super-resolution (DLSR) has the advantages of simple operation and low cost, and has attracted much attention recently. Here we propose a novel DLSR model named Modified Hybrid Task Cascade U-Net (MHTCUN) for image super-resolution in optical microscopy using the public biological image dataset BioSR. The MHTCUN has three stages, and we introduce a novel module named Feature Refinement Module (FRM) to extract deeper features in each stage. In each FRM, a U-Net is introduced to refine the features, and the Fourier Channel Attention Block (FCAB) is introduced in the U-Net to learn the high-level representation of the high-frequency information of different feature maps. Compared with six state-of-the-art DLSR models used for single-image super-resolution (SISR), our MHTCUN achieves the highest signal-to-noise ratio (PSNR) of 26.87 and structural similarity (SSIM) of 0.746, demonstrating that our MHTCUN has achieved the state-of-the-art in DLSR. Compared with the DLSR model DFCAN used for image super-resolution in optical microscopy specially, MHTCUN has a significant improvement in PSNR and a slight improvement in SSIM on BioSR. Finally, we finetune the trained MHTCUN on the other biological images. MHTCUN also shows good performance on denoising, contrast enhancement, and resolution enhancement.