BMB Reports最新文献

筛选
英文 中文
Development of a highly effective recombinant protein from human collagen type III Alpha 1 (COL3A1) to enhance human skin cell functionality. 开发一种高效的人胶原蛋白 III 型α1(COL3A1)重组蛋白,以增强人皮肤细胞的功能。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Young Un Kim, HyunJoon Gi, Eun Kyung Jeong, Seokwon Han, Woo-Young Seo, Young Jun Kim, Sang Bae Lee, KyeongJin Kim
{"title":"Development of a highly effective recombinant protein from human collagen type III Alpha 1 (COL3A1) to enhance human skin cell functionality.","authors":"Young Un Kim, HyunJoon Gi, Eun Kyung Jeong, Seokwon Han, Woo-Young Seo, Young Jun Kim, Sang Bae Lee, KyeongJin Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Collagen type III, a member of the fibrillar collagen group, is a major component of the extracellular matrix in various internal organs, the vascular systems, and skin. It is essential to maintain the structural integrity and functionality of these tissues, and plays a significant role in wound healing, often found alongside collagen type I. Despite being the second most abundant collagen in human tissues after type I, its biological functions on various skin properties have not been thoroughly studied. In this study, we have isolated and developed an effective recombinant protein derived from human collagen type III alpha 1 chain (hCOL3A1). Our findings demonstrate that the recombinant proteins hCOL3A1-THR-M1 and M4 stimulate cell proliferation and collagen biosynthesis in human dermal fibroblasts (HDFs), and enhance wound healing. Notably, hCOL3A1-THR-M1 (referred to as HUCOLLATIN3) specifically penetrates both the epidermal and dermal layers in a full-thickness skin model. These results collectively indicate that hCOL3A1-THR-M1 holds promise as a potential biomaterial to prevent skin aging.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nuclear Structures and Their Emerging Roles in Cell Differentiation and Development. 核结构及其在细胞分化和发育中的新作用
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Hye Ji Cha
{"title":"Nuclear Structures and Their Emerging Roles in Cell Differentiation and Development.","authors":"Hye Ji Cha","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluorescence-based techniques for investigating estrogen receptor dynamics. 基于荧光的雌激素受体动态研究技术。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Kiseok Han, Gyuho Choi, Tae-Jin Kim
{"title":"Fluorescence-based techniques for investigating estrogen receptor dynamics.","authors":"Kiseok Han, Gyuho Choi, Tae-Jin Kim","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Understanding estrogen receptor (ER) signaling pathways is crucial for uncovering the mechanisms behind estrogen-related diseases, such as breast cancer, and addressing the effects of environmental estrogenic disruptors. Traditionally, ER signaling involves genomic events, including ligand binding, receptor dimerization, and transcriptional modulation within cellular nuclei. However, recent research have revealed ERs also participate in non-genomic signaling pathways, adding complexity to their functions. Researchers use advanced fluorescence-based techniques, leveraging fluorescent probes (FPb) to study ER dynamics in living cells, such as spatial distribution, expression kinetics, and functional activities. This review systematically examines the application of fluorescent probes in ER signaling research, covering the visualization of ER, ligandreceptor interactions, receptor dimerization, estrogen response elements (EREs)-mediated transcriptional activation, and G-proteincoupled estrogen receptor (GPER) signaling. Our aim is to provide researchers with valuable insights for employing FPb in their explorations of ER signaling.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose-dependent insulinotropic polypeptide (GIP) alleviates ferroptosis in aging-induced brain damage through the Epac/Rap1 signaling pathway. 葡萄糖依赖性胰岛素多肽(GIP)通过Epac/Rap1信号通路缓解衰老诱导的脑损伤中的铁蛋白沉积。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Jiwon Ko, Soyoung Jang, Soyeon Jang, Song Park, Junkoo Yi, Dong Kyu Choi, Seonggon Kim, Myoung Ok Kim, Su-Geun Lim, Zae Young Ryoo
{"title":"Glucose-dependent insulinotropic polypeptide (GIP) alleviates ferroptosis in aging-induced brain damage through the Epac/Rap1 signaling pathway.","authors":"Jiwon Ko, Soyoung Jang, Soyeon Jang, Song Park, Junkoo Yi, Dong Kyu Choi, Seonggon Kim, Myoung Ok Kim, Su-Geun Lim, Zae Young Ryoo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Glucose-dependent insulinotropic polypeptide (GIP), a 42-aminoacid hormone, exerts multifaceted effects in physiology, most notably in metabolism, obesity, and inflammation. Its significance extends to neuroprotection, promoting neuronal proliferation, maintaining physiological homeostasis, and inhibiting cell death, all of which play a crucial role in the context of neurodegenerative diseases. Through intricate signaling pathways involving its cognate receptor (GIPR), a member of the G protein-coupled receptors, GIP maintains cellular homeostasis and regulates a defense system against ferroptosis, an essential process in aging. Our study, utilizing GIP-overexpressing mice and in vitro cell model, elucidates the pivotal role of GIP in preserving neuronal integrity and combating age-related damage, primarily through the Epac/Rap1 pathway. These findings shed light on the potential of GIP as a therapeutic target for the pathogenesis of ferroptosis in neurodegenerative diseases and aging.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stromal cells and epigenetics: emerging key players of chronic inflammatory skin diseases. 基质细胞和表观遗传学:慢性炎症性皮肤病的新兴关键角色。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Jihye Kim, Michael Detmar
{"title":"Stromal cells and epigenetics: emerging key players of chronic inflammatory skin diseases.","authors":"Jihye Kim, Michael Detmar","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Epigenetic alterations play a crucial role in developmental processes, tissue regeneration, and cellular differentiation. Epigenetic changes are dynamically reversible. Various drugs that target DNA methyltransferases or histone deacetylases have demonstrated their ability to restore normal epigenetic patterns in a number of diseases. While the involvement of epigenetic modifications has been identified in chronic inflammatory diseases, their specific impact on skin inflammation in stromal cells remains unclear. This mini-review explores the role of stromal cells in chronic inflammatory skin diseases, focusing on epigenetic modifications of stromal cells such as fibroblasts, lymphatic, and blood vascular endothelial cells in both healthy and diseased skin. We also provide an overview of recent findings that highlight the contribution of stromal cells, including fibroblasts, to inflammatory and remodeling processes through epigenetic changes in the context of chronic inflammatory conditions. Investigating epigenetic reprogramming of stromal cells might lead to novel strategies for treating chronic inflammatory skin diseases.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human hepatocellular carcinoma. 抑制 P2RX7 可抑制糖酵解和 AKT 在人肝细胞癌中的激活,从而增加细胞毒性。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-09-02
Jae Kook Yang, Junhyung Kim, Young Hyeon Ahn, Sang Ho Bae, Moo-Jun Baek, Sae Hwan Lee, Jong-Seok Moon
{"title":"Inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human hepatocellular carcinoma.","authors":"Jae Kook Yang, Junhyung Kim, Young Hyeon Ahn, Sang Ho Bae, Moo-Jun Baek, Sae Hwan Lee, Jong-Seok Moon","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer. HCC occurs people with chronic liver diseases. The purinergic receptor P2X 7 (P2RX7) is involved in tumor proliferation and growth. Also, P2RX7 is associated with tumor invasion and metastatic dissemination. High glucose utilization is important for the survival of various types of tumors. However, the role of P2RX7 in glucose metabolism and cellular survival of HCC remains unclear. Here, our results show that the gene and protein levels of P2RX7 were elevated in tumor cells of patients with HCC. The pharmacological inhibition of P2RX7 by A-804598, a selective P2RX7 antagonist, and genetic inhibition by P2RX7 knockdown suppressed the glycolytic activity by reduction of hexokinase 2 (HK2), a key enzyme of the glycolysis pathway, in human HCC cells. Also, both A-804598 treatment and P2RX7 knockdown induced cytotoxicity via inhibition of AKT activation which is critical for tumor cell survival in human HCC cells. Moreover, A-804598 treatment and P2RX7 knockdown increased cytotoxicity and caspase-3 activation in human HCC cells. These results suggest that inhibition of P2RX7 contributes to cytotoxicity by suppression of glycolysis and AKT activation in human HCC.</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142104039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stromal cells and epigenetics: emerging key players of chronic inflammatory skin diseases 基质细胞和表观遗传学:慢性炎症性皮肤病的新兴关键角色
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-08-08 DOI: 10.5483/bmbrep.2024-0039
Jihye Kim, Michael Detmar
{"title":"Stromal cells and epigenetics: emerging key players of chronic inflammatory skin diseases","authors":"Jihye Kim, Michael Detmar","doi":"10.5483/bmbrep.2024-0039","DOIUrl":"https://doi.org/10.5483/bmbrep.2024-0039","url":null,"abstract":"","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141927963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural stability for surface display of antigen 43 and application to bacterial outer membrane vesicles production. 抗原 43 表面显示的结构稳定性以及在细菌外膜囊泡生产中的应用。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-08-01
Gna Ahn, Hyo-Won Yoon, Jae-Won Choi, Woo-Ri Shin, Jiho Min, Yang-Hoon Kim, Ji-Young Ahn
{"title":"Structural stability for surface display of antigen 43 and application to bacterial outer membrane vesicles production.","authors":"Gna Ahn, Hyo-Won Yoon, Jae-Won Choi, Woo-Ri Shin, Jiho Min, Yang-Hoon Kim, Ji-Young Ahn","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Antigen 43 (Ag43) proteins, found on the outer membrane of Escherichia coli, are β-sheets that fold into a unique cylindrical structure known as a β-barrel. There are several known structural similarities between bacterial Ag43 autotransporters and physical components; however, the factors that stabilize the barrel and the mechanism for Ag43 passenger domainmediated translocation across the pore of the β-barrel remain unclear. In this study, we analyzed Ag43β-enhanced green fluorescent protein chimeric variants to provide new insights into the autotransporter Ag43β-barrel assembly, focusing on the impact of the α-helical linker domain. Among the chimeric variants, Ag43β700 showed the highest surface display, which was confirmed through extracellular protease digestion, flow cytometry, and an evaluation of outer membrane vesicles (OMVs). The Ag43β700 module offered reliable information on stable barrel folding and chimera expression at the exterior of the OMVs. [BMB Reports 2024; 57(8): 369-374].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362141/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential role of ANGPTL4 in cancer progression, metastasis, and metabolism: a brief review. ANGPTL4 在癌症进展、转移和新陈代谢中的潜在作用:简要回顾。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-08-01
Min Seok Park, Sang Eun Kim, Pureunchowon Lee, Ju-Hee Lee, Kyung Hee Jung, Soon-Sun Hong
{"title":"Potential role of ANGPTL4 in cancer progression, metastasis, and metabolism: a brief review.","authors":"Min Seok Park, Sang Eun Kim, Pureunchowon Lee, Ju-Hee Lee, Kyung Hee Jung, Soon-Sun Hong","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Angiopoietin-like 4 (ANGPTL4) has been identified as an adipokine involved in several non-metabolic and metabolic diseases, including angiogenesis, glucose homeostasis, and lipid metabolism. To date, the role of ANGPTL4 in cancer growth and progression, and metastasis, has been variable. Accumulating evidence suggests that proteolytic processing and posttranslational modifications of ANGPTL4 can significantly alter its function, and may contribute to the multiple and conflicting roles of ANGPTL4 in a tissue-dependent manner. With the growing interest in ANGPTL4 in cancer diagnosis and therapy, we aim to provide an up-to-date review of the implications of ANGPTL4 as a biomarker/oncogene in cancer metabolism, metastasis, and the tumor microenvironment (TME). In cancer cells, ANGPTL4 plays an important role in regulating metabolism by altering intracellular glucose, lipid, and amino acid metabolism. We also highlight the knowledge gaps and future prospect of ANGPTL4 in lymphatic metastasis and perineural invasion through various signaling pathways, underscoring its importance in cancer progression and prognosis. Through this review, a better understanding of the role of ANGPTL4 in cancer progression within the TME will provide new insights into other aspects of tumorigenesis and the potential therapeutic value of ANGPTL4. [BMB Reports 2024; 57(8): 343-351].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141750981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis. miR-328-5p 在早期内皮炎症和晚期动脉粥样硬化中发挥关键负调控因子的作用。
IF 2.9 3区 生物学
BMB Reports Pub Date : 2024-08-01
Yangxia Zhang, Yingke Li, Zhisheng Han, Qingyang Huo, Longkai Ji, Xuejia Liu, Han Li, Xinxing Zhu, Zhipeng Hao
{"title":"miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis.","authors":"Yangxia Zhang, Yingke Li, Zhisheng Han, Qingyang Huo, Longkai Ji, Xuejia Liu, Han Li, Xinxing Zhu, Zhipeng Hao","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis. [BMB Reports 2024; 57(8): 375-380].</p>","PeriodicalId":9010,"journal":{"name":"BMB Reports","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信