Biometrika最新文献

筛选
英文 中文
More Efficient Exact Group Invariance Testing: using a Representative Subgroup 更有效的精确群不变性测试:使用代表子群
IF 2.7 2区 数学
Biometrika Pub Date : 2023-09-01 DOI: 10.1093/biomet/asad050
N. W. Koning, J. Hemerik
{"title":"More Efficient Exact Group Invariance Testing: using a Representative Subgroup","authors":"N. W. Koning, J. Hemerik","doi":"10.1093/biomet/asad050","DOIUrl":"https://doi.org/10.1093/biomet/asad050","url":null,"abstract":"\u0000 We consider testing invariance of a distribution under an algebraic group of transformations, such as permutations or sign-flips. As such groups are typically huge, tests based on the full group are often computationally infeasible. Hence, it is standard practice to use a random subset of transformations. We improve upon this by replacing the random subset with a strategically chosen, fixed subgroup of transformations. In a generalized location model, we show that the resulting tests are often consistent for lower signal-to-noise ratios. Moreover, we establish an analogy between the power improvement and switching from a t-test to a Z-test under normality. Importantly, in permutation-based multiple testing, the efficiency gain with our approach can be huge, since we attain the same power with much fewer permutations.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48678941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalized Bayes framework for probabilistic clustering. 概率聚类的广义Bayes框架
IF 2.4 2区 数学
Biometrika Pub Date : 2023-09-01 Epub Date: 2023-01-19 DOI: 10.1093/biomet/asad004
Tommaso Rigon, Amy H Herring, David B Dunson
{"title":"A generalized Bayes framework for probabilistic clustering.","authors":"Tommaso Rigon, Amy H Herring, David B Dunson","doi":"10.1093/biomet/asad004","DOIUrl":"10.1093/biomet/asad004","url":null,"abstract":"<p><p>Loss-based clustering methods, such as k-means clustering and its variants, are standard tools for finding groups in data. However, the lack of quantification of uncertainty in the estimated clusters is a disadvantage. Model-based clustering based on mixture models provides an alternative approach, but such methods face computational problems and are highly sensitive to the choice of kernel. In this article we propose a generalized Bayes framework that bridges between these paradigms through the use of Gibbs posteriors. In conducting Bayesian updating, the loglikelihood is replaced by a loss function for clustering, leading to a rich family of clustering methods. The Gibbs posterior represents a coherent updating of Bayesian beliefs without needing to specify a likelihood for the data, and can be used for characterizing uncertainty in clustering. We consider losses based on Bregman divergence and pairwise similarities, and develop efficient deterministic algorithms for point estimation along with sampling algorithms for uncertainty quantification. Several existing clustering algorithms, including k-means, can be interpreted as generalized Bayes estimators in our framework, and thus we provide a method of uncertainty quantification for these approaches, allowing, for example, calculation of the probability that a data point is well clustered.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":"559-578"},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46381325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marginal proportional hazards models for multivariate interval-censored data. 多变量区间删失数据的边际比例危害模型。
IF 2.4 2区 数学
Biometrika Pub Date : 2023-09-01 Epub Date: 2022-11-02 DOI: 10.1093/biomet/asac059
Yangjianchen Xu, Donglin Zeng, D Y Lin
{"title":"Marginal proportional hazards models for multivariate interval-censored data.","authors":"Yangjianchen Xu, Donglin Zeng, D Y Lin","doi":"10.1093/biomet/asac059","DOIUrl":"10.1093/biomet/asac059","url":null,"abstract":"<p><p>Multivariate interval-censored data arise when there are multiple types of events or clusters of study subjects, such that the event times are potentially correlated and when each event is only known to occur over a particular time interval. We formulate the effects of potentially time-varying covariates on the multivariate event times through marginal proportional hazards models while leaving the dependence structures of the related event times unspecified. We construct the nonparametric pseudolikelihood under the working assumption that all event times are independent, and we provide a simple and stable EM-type algorithm. The resulting nonparametric maximum pseudolikelihood estimators for the regression parameters are shown to be consistent and asymptotically normal, with a limiting covariance matrix that can be consistently estimated by a sandwich estimator under arbitrary dependence structures for the related event times. We evaluate the performance of the proposed methods through extensive simulation studies and present an application to data from the Atherosclerosis Risk in Communities Study.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 3","pages":"815-830"},"PeriodicalIF":2.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434824/pdf/nihms-1874830.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10490393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASSESSING TIME-VARYING CAUSAL EFFECT MODERATION IN THE PRESENCE OF CLUSTER-LEVEL TREATMENT EFFECT HETEROGENEITY AND INTERFERENCE. 在集群水平治疗效果异质性和干扰存在的情况下评估时变因果效应调节。
IF 2.7 2区 数学
Biometrika Pub Date : 2023-09-01 DOI: 10.1093/biomet/asac065
Jieru Shi, Zhenke Wu, Walter Dempsey
{"title":"ASSESSING TIME-VARYING CAUSAL EFFECT MODERATION IN THE PRESENCE OF CLUSTER-LEVEL TREATMENT EFFECT HETEROGENEITY AND INTERFERENCE.","authors":"Jieru Shi,&nbsp;Zhenke Wu,&nbsp;Walter Dempsey","doi":"10.1093/biomet/asac065","DOIUrl":"https://doi.org/10.1093/biomet/asac065","url":null,"abstract":"<p><p>The micro-randomized trial (MRT) is a sequential randomized experimental design to empirically evaluate the effectiveness of mobile health (mHealth) intervention components that may be delivered at hundreds or thousands of decision points. MRTs have motivated a new class of causal estimands, termed \"causal excursion effects\", for which semiparametric inference can be conducted via a weighted, centered least squares criterion (Boruvka et al., 2018). Existing methods assume between-subject independence and non-interference. Deviations from these assumptions often occur. In this paper, causal excursion effects are revisited under potential cluster-level treatment effect heterogeneity and interference, where the treatment effect of interest may depend on cluster-level moderators. Utility of the proposed methods is shown by analyzing data from a multi-institution cohort of first year medical residents in the United States.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"110 3","pages":"645-662"},"PeriodicalIF":2.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501736/pdf/nihms-1882489.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10653942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deep Kronecker Network 深度克罗内克网络
2区 数学
Biometrika Pub Date : 2023-08-31 DOI: 10.1093/biomet/asad049
Long Feng, Guang Yang
{"title":"Deep Kronecker Network","authors":"Long Feng, Guang Yang","doi":"10.1093/biomet/asad049","DOIUrl":"https://doi.org/10.1093/biomet/asad049","url":null,"abstract":"Summary We develop a novel framework named Deep Kronecker Network for the analysis of medical imaging data, including magnetic resonance imaging (MRI), functional MRI, computed tomography, and more. Medical imaging data differs from general images in two main aspects: i) the sample size is often considerably smaller, and ii) the interpretation of the model is usually more crucial than predicting the outcome. As a result, standard methods such as convolutional neural networks cannot be directly applied to medical imaging analysis. Therefore, we propose the Deep Kronecker Network, which can adapt to the low sample size constraint and offer the desired model interpretation. Our approach is versatile, as it works for both matrix and tensor represented image data and can be applied to discrete and continuous outcomes. The Deep Kronecker network is built upon a Kronecker product structure, which implicitly enforces a piecewise smooth property on coefficients. Moreover, our approach resembles a fully convolutional network as the Kronecker structure can be expressed in a convolutional form. Interestingly, our approach also has strong connections to the tensor regression framework proposed by Zhou et al. (2013), which imposes a canonical low-rank structure on tensor coefficients. We conduct both classification and regression analyses using real MRI data from the Alzheimer’s Disease Neuroimaging Initiative to demonstrate the effectiveness of our approach.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135830829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kernel interpolation generalizes poorly 核插值的泛化性很差
2区 数学
Biometrika Pub Date : 2023-08-07 DOI: 10.1093/biomet/asad048
Yicheng Li, Haobo Zhang, Qian Lin
{"title":"Kernel interpolation generalizes poorly","authors":"Yicheng Li, Haobo Zhang, Qian Lin","doi":"10.1093/biomet/asad048","DOIUrl":"https://doi.org/10.1093/biomet/asad048","url":null,"abstract":"Summary One of the most interesting problems in the recent renaissance of the studies in kernel regression might be whether kernel interpolation can generalize well, since it may help us understand the ‘benign overfitting phenomenon’ reported in the literature on deep networks. In this paper, under mild conditions, we show that, for any ε&amp;gt;0, the generalization error of kernel interpolation is lower bounded by Ω(n−ε). In other words, the kernel interpolation generalizes poorly for a large class of kernels. As a direct corollary, we can show that overfitted wide neural networks defined on the sphere generalize poorly.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"98 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135904639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
τ -censored weighted Benjamini-Hochberg procedures under independence 独立性下τ -审查加权benjami - hochberg程序
IF 2.7 2区 数学
Biometrika Pub Date : 2023-08-02 DOI: 10.1093/biomet/asad047
Haibing Zhao, Huijuan Zhou
{"title":"τ -censored weighted Benjamini-Hochberg procedures under independence","authors":"Haibing Zhao, Huijuan Zhou","doi":"10.1093/biomet/asad047","DOIUrl":"https://doi.org/10.1093/biomet/asad047","url":null,"abstract":"\u0000 In the field of multiple hypothesis testing, auxiliary information can be leveraged to enhance the efficiency of test procedures. A common way to make use of auxiliary information is by weighting p-values. However, when the weights are learned from data, controlling the finite-sample false discovery rate becomes challenging, and most existing weighted procedures only guarantee false discovery rate control in an asymptotic limit. In a recent study conducted by Ignatiadis & Huber (2021), a novel τ-censored weighted Benjamini-Hochberg procedure was proposed to control the finite-sample false discovery rate. The authors employed the cross-weighting approach to learn weights for the p-values. This approach randomly splits the data into several folds and constructs a weight for each p-value Pi using the p-values outside the fold containing Pi. Cross-weighting does not exploit the p-value information inside the fold and only balances the weights within each fold, which may result in a loss of power. In this article, we introduce two methods for constructing data-driven weights for τ-censored weighted Benjamini-Hochberg procedures under independence. They provide new insight into masking p-values to prevent overfitting in multiple testing. The first method utilizes a leave-one-out technique, where all but one of the p-values are used to learn a weight for each p-value. This technique masks the information of a p-value in its weight by calculating the infimum of the weight with respect to the p-value. The second method uses partial information from each p-value to construct weights and utilizes the conditional distributions of the null p-values to establish false discovery rate control. Additionally, we propose two methods for estimating the null proportion and demonstrate how to integrate null-proportion adaptivity into the proposed weights to improve power.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49253424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Online Inference with Debiased Stochastic Gradient Descent 基于去偏随机梯度下降的在线推理
IF 2.7 2区 数学
Biometrika Pub Date : 2023-07-27 DOI: 10.1093/biomet/asad046
Ruijian Han, Lan Luo, Yuanyuan Lin, Jian Huang
{"title":"Online Inference with Debiased Stochastic Gradient Descent","authors":"Ruijian Han, Lan Luo, Yuanyuan Lin, Jian Huang","doi":"10.1093/biomet/asad046","DOIUrl":"https://doi.org/10.1093/biomet/asad046","url":null,"abstract":"\u0000 We propose a debiased stochastic gradient descent algorithm for online statistical inference with high-dimensional data. Our approach combines the debiasing technique developed in high-dimensional statistics with the stochastic gradient descent algorithm. It can be used for efficiently constructing confidence intervals in an online fashion. Our proposed algorithm has several appealing aspects: first, as a one-pass algorithm, it reduces the time complexity; in addition, each update step requires only the current data together with the previous estimate, which reduces the space complexity. We establish the asymptotic normality of the proposed estimator under mild conditions on the sparsity level of the parameter and the data distribution. We conduct numerical experiments to demonstrate the proposed debiased stochastic gradient descent algorithm reaches nominal coverage probability. Furthermore, we illustrate our method with a high-dimensional text dataset.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44970146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An anomaly arising in the analysis of processes with more than one source of variability 在分析具有一个以上变率源的过程时出现的异常
IF 2.7 2区 数学
Biometrika Pub Date : 2023-07-18 DOI: 10.1093/biomet/asad044
H. Battey, P. McCullagh
{"title":"An anomaly arising in the analysis of processes with more than one source of variability","authors":"H. Battey, P. McCullagh","doi":"10.1093/biomet/asad044","DOIUrl":"https://doi.org/10.1093/biomet/asad044","url":null,"abstract":"\u0000 It is frequently observed in practice that the Wald statistic gives a poor assessment of the statistical significance of a variance component. This paper provides detailed analytic insight into the phenomenon by way of two simple models, which point to an atypical geometry as the source of the aberration. The latter can in principle be checked numerically to cover situations of arbitrary complexity, such as those arising from elaborate forms of blocking in an experimental context, or models for longitudinal or clustered data. The salient point, echoing Dickey (2020), is that a suitable likelihood-ratio test should always be used for the assessment of variance components.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42978709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cross-validation-based statistical theory for point processes 基于交叉验证的点过程统计理论
IF 2.7 2区 数学
Biometrika Pub Date : 2023-06-27 DOI: 10.1093/biomet/asad041
O. Cronie, M. Moradi, C. Biscio
{"title":"A cross-validation-based statistical theory for point processes","authors":"O. Cronie, M. Moradi, C. Biscio","doi":"10.1093/biomet/asad041","DOIUrl":"https://doi.org/10.1093/biomet/asad041","url":null,"abstract":"\u0000 Motivated by cross-validation’s general ability to reduce overfitting and mean square error, we develop a cross-validation-based statistical theory for general point processes. It is based on the combination of two novel concepts for general point processes: cross-validation and prediction errors. Our cross-validation approach uses thinning to split a point process/pattern into pairs of training and validation sets, while our prediction errors measure discrepancy between two point processes. The new statistical approach, which may be used to model different distributional characteristics, exploits the prediction errors to measure how well a given model predicts validation sets using associated training sets. Having indicated that our new framework generalizes many existing statistical approaches, we then establish different theoretical properties for it, including large sample properties. We further recognize that non-parametric intensity estimation is an instance of Papangelou conditional intensity estimation, which we exploit to apply our new statistical theory to kernel intensity estimation. Using independent thinning-based cross-validation, we numerically show that the new approach substantially outperforms the state of the art in bandwidth selection. Finally, we carry out intensity estimation for a dataset in forestry (Euclidean domain) and a dataset in neurology (linear network).","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45141737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信